Описание
**DISPUTED**A failure in the -fstack-protector feature in GCC-based toolchains that target AArch64 allows an attacker to exploit an existing buffer overflow in dynamically-sized local variables in your application without this being detected. This stack-protector failure only applies to C99-style dynamically-sized local variables or those created using alloca(). The stack-protector operates as intended for statically-sized local variables. The default behavior when the stack-protector detects an overflow is to terminate your application, resulting in controlled loss of availability. An attacker who can exploit a buffer overflow without triggering the stack-protector might be able to change program flow control to cause an uncontrolled loss of availability or to go further and affect confidentiality or integrity. NOTE: The GCC project argues that this is a missed hardening bug and not a vulnerability by itself.
Пакеты
Пакет | Статус | Версия исправления | Релиз | Тип |
---|---|---|---|---|
gcc-13 | fixed | 13.2.0-4 | package | |
gcc-12 | fixed | 12.3.0-9 | package | |
gcc-12 | fixed | 12.2.0-14+deb12u1 | bookworm | package |
gcc-11 | fixed | 11.4.0-4 | package | |
gcc-10 | fixed | 10.5.0-3 | package | |
gcc-9 | fixed | 9.5.0-6 | package | |
gcc-8 | removed | package | ||
gcc-7 | removed | package |
Примечания
https://github.com/metaredteam/external-disclosures/security/advisories/GHSA-x7ch-h5rf-w2mf
Not considered a security issue by GCC upstream
https://developer.arm.com/Arm%20Security%20Center/GCC%20Stack%20Protector%20Vulnerability%20AArch64
EPSS
Связанные уязвимости
**DISPUTED**A failure in the -fstack-protector feature in GCC-based toolchains that target AArch64 allows an attacker to exploit an existing buffer overflow in dynamically-sized local variables in your application without this being detected. This stack-protector failure only applies to C99-style dynamically-sized local variables or those created using alloca(). The stack-protector operates as intended for statically-sized local variables. The default behavior when the stack-protector detects an overflow is to terminate your application, resulting in controlled loss of availability. An attacker who can exploit a buffer overflow without triggering the stack-protector might be able to change program flow control to cause an uncontrolled loss of availability or to go further and affect confidentiality or integrity. NOTE: The GCC project argues that this is a missed hardening bug and not a vulnerability by itself.
**DISPUTED**A failure in the -fstack-protector feature in GCC-based toolchains that target AArch64 allows an attacker to exploit an existing buffer overflow in dynamically-sized local variables in your application without this being detected. This stack-protector failure only applies to C99-style dynamically-sized local variables or those created using alloca(). The stack-protector operates as intended for statically-sized local variables. The default behavior when the stack-protector detects an overflow is to terminate your application, resulting in controlled loss of availability. An attacker who can exploit a buffer overflow without triggering the stack-protector might be able to change program flow control to cause an uncontrolled loss of availability or to go further and affect confidentiality or integrity. NOTE: The GCC project argues that this is a missed hardening bug and not a vulnerability by itself.
**DISPUTED**A failure in the -fstack-protector feature in GCC-based toolchains that target AArch64 allows an attacker to exploit an existing buffer overflow in dynamically-sized local variables in your application without this being detected. This stack-protector failure only applies to C99-style dynamically-sized local variables or those created using alloca(). The stack-protector operates as intended for statically-sized local variables. The default behavior when the stack-protector detects an overflow is to terminate your application, resulting in controlled loss of availability. An attacker who can exploit a buffer overflow without triggering the stack-protector might be able to change program flow control to cause an uncontrolled loss of availability or to go further and affect confidentiality or integrity. NOTE: The GCC project argues that this is a missed hardening bug and not a vulnerability by itself.
EPSS