Логотип exploitDog
Консоль
Логотип exploitDog

exploitDog

debian логотип

CVE-2025-38608

Опубликовано: 19 авг. 2025
Источник: debian

Описание

In the Linux kernel, the following vulnerability has been resolved: bpf, ktls: Fix data corruption when using bpf_msg_pop_data() in ktls When sending plaintext data, we initially calculated the corresponding ciphertext length. However, if we later reduced the plaintext data length via socket policy, we failed to recalculate the ciphertext length. This results in transmitting buffers containing uninitialized data during ciphertext transmission. This causes uninitialized bytes to be appended after a complete "Application Data" packet, leading to errors on the receiving end when parsing TLS record.

Пакеты

ПакетСтатусВерсия исправленияРелизТип
linuxunfixedpackage

Примечания

  • https://git.kernel.org/linus/178f6a5c8cb3b6be1602de0964cd440243f493c9 (6.17-rc1)

Связанные уязвимости

ubuntu
4 дня назад

In the Linux kernel, the following vulnerability has been resolved: bpf, ktls: Fix data corruption when using bpf_msg_pop_data() in ktls When sending plaintext data, we initially calculated the corresponding ciphertext length. However, if we later reduced the plaintext data length via socket policy, we failed to recalculate the ciphertext length. This results in transmitting buffers containing uninitialized data during ciphertext transmission. This causes uninitialized bytes to be appended after a complete "Application Data" packet, leading to errors on the receiving end when parsing TLS record.

CVSS3: 5.5
redhat
5 дней назад

In the Linux kernel, the following vulnerability has been resolved: bpf, ktls: Fix data corruption when using bpf_msg_pop_data() in ktls When sending plaintext data, we initially calculated the corresponding ciphertext length. However, if we later reduced the plaintext data length via socket policy, we failed to recalculate the ciphertext length. This results in transmitting buffers containing uninitialized data during ciphertext transmission. This causes uninitialized bytes to be appended after a complete "Application Data" packet, leading to errors on the receiving end when parsing TLS record.

nvd
5 дней назад

In the Linux kernel, the following vulnerability has been resolved: bpf, ktls: Fix data corruption when using bpf_msg_pop_data() in ktls When sending plaintext data, we initially calculated the corresponding ciphertext length. However, if we later reduced the plaintext data length via socket policy, we failed to recalculate the ciphertext length. This results in transmitting buffers containing uninitialized data during ciphertext transmission. This causes uninitialized bytes to be appended after a complete "Application Data" packet, leading to errors on the receiving end when parsing TLS record.

github
5 дней назад

In the Linux kernel, the following vulnerability has been resolved: bpf, ktls: Fix data corruption when using bpf_msg_pop_data() in ktls When sending plaintext data, we initially calculated the corresponding ciphertext length. However, if we later reduced the plaintext data length via socket policy, we failed to recalculate the ciphertext length. This results in transmitting buffers containing uninitialized data during ciphertext transmission. This causes uninitialized bytes to be appended after a complete "Application Data" packet, leading to errors on the receiving end when parsing TLS record.