Описание
Уязвимость функции wc_ecc_sign_hash() библиотеки SSL/TLS WolfSSL связана с некорректной проверкой криптографической подписи ECDSA в результате расхождения при обработке значений эллиптической кривой. Эксплуатация уязвимости может позволить нарушителю получить несанкционированный доступ к защищаемой информации
Вендор
Наименование ПО
Версия ПО
Тип ПО
Операционные системы и аппаратные платформы
Уровень опасности уязвимости
Возможные меры по устранению уязвимости
Статус уязвимости
Наличие эксплойта
Информация об устранении
Ссылки на источники
Идентификаторы других систем описаний уязвимостей
- CVE
EPSS
4.1 Medium
CVSS3
3.8 Low
CVSS2
Связанные уязвимости
Generating the ECDSA nonce k samples a random number r and then truncates this randomness with a modular reduction mod n where n is the order of the elliptic curve. Meaning k = r mod n. The division used during the reduction estimates a factor q_e by dividing the upper two digits (a digit having e.g. a size of 8 byte) of r by the upper digit of n and then decrements q_e in a loop until it has the correct size. Observing the number of times q_e is decremented through a control-flow revealing side-channel reveals a bias in the most significant bits of k. Depending on the curve this is either a negligible bias or a significant bias large enough to reconstruct k with lattice reduction methods. For SECP160R1, e.g., we find a bias of 15 bits.
Generating the ECDSA nonce k samples a random number r and then truncates this randomness with a modular reduction mod n where n is the order of the elliptic curve. Meaning k = r mod n. The division used during the reduction estimates a factor q_e by dividing the upper two digits (a digit having e.g. a size of 8 byte) of r by the upper digit of n and then decrements q_e in a loop until it has the correct size. Observing the number of times q_e is decremented through a control-flow revealing side-channel reveals a bias in the most significant bits of k. Depending on the curve this is either a negligible bias or a significant bias large enough to reconstruct k with lattice reduction methods. For SECP160R1, e.g., we find a bias of 15 bits.
Generating the ECDSA nonce k samples a random number r and then trunc ...
Generating the ECDSA nonce k samples a random number r and then truncates this randomness with a modular reduction mod n where n is the order of the elliptic curve. Meaning k = r mod n. The division used during the reduction estimates a factor q_e by dividing the upper two digits (a digit having e.g. a size of 8 byte) of r by the upper digit of n and then decrements q_e in a loop until it has the correct size. Observing the number of times q_e is decremented through a control-flow revealing side-channel reveals a bias in the most significant bits of k. Depending on the curve this is either a negligible bias or a significant bias large enough to reconstruct k with lattice reduction methods. For SECP160R1, e.g., we find a bias of 15 bits.
EPSS
4.1 Medium
CVSS3
3.8 Low
CVSS2