Описание
Уязвимость функции load_unaligned_zeropad компонента arm64 ядра операционной системы Linux связана с неправильным извлечением регистров data и addr. Эксплуатация уязвимости может позволить нарушителю вызвать отказ в обслуживании.
Вендор
Наименование ПО
Версия ПО
Тип ПО
Операционные системы и аппаратные платформы
Уровень опасности уязвимости
Возможные меры по устранению уязвимости
Статус уязвимости
Наличие эксплойта
Информация об устранении
Ссылки на источники
Идентификаторы других систем описаний уязвимостей
- CVE
EPSS
6.2 Medium
CVSS3
3.8 Low
CVSS2
Связанные уязвимости
In the Linux kernel, the following vulnerability has been resolved: arm64: extable: fix load_unaligned_zeropad() reg indices In ex_handler_load_unaligned_zeropad() we erroneously extract the data and addr register indices from ex->type rather than ex->data. As ex->type will contain EX_TYPE_LOAD_UNALIGNED_ZEROPAD (i.e. 4): * We'll always treat X0 as the address register, since EX_DATA_REG_ADDR is extracted from bits [9:5]. Thus, we may attempt to dereference an arbitrary address as X0 may hold an arbitrary value. * We'll always treat X4 as the data register, since EX_DATA_REG_DATA is extracted from bits [4:0]. Thus we will corrupt X4 and cause arbitrary behaviour within load_unaligned_zeropad() and its caller. Fix this by extracting both values from ex->data as originally intended. On an MTE-enabled QEMU image we are hitting the following crash: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 Call trace: fixup_exception+0xc4/0x108 __do_kernel_faul...
In the Linux kernel, the following vulnerability has been resolved: arm64: extable: fix load_unaligned_zeropad() reg indices In ex_handler_load_unaligned_zeropad() we erroneously extract the data and addr register indices from ex->type rather than ex->data. As ex->type will contain EX_TYPE_LOAD_UNALIGNED_ZEROPAD (i.e. 4): * We'll always treat X0 as the address register, since EX_DATA_REG_ADDR is extracted from bits [9:5]. Thus, we may attempt to dereference an arbitrary address as X0 may hold an arbitrary value. * We'll always treat X4 as the data register, since EX_DATA_REG_DATA is extracted from bits [4:0]. Thus we will corrupt X4 and cause arbitrary behaviour within load_unaligned_zeropad() and its caller. Fix this by extracting both values from ex->data as originally intended. On an MTE-enabled QEMU image we are hitting the following crash: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 Call trace: fixup_exception+0xc4/0x108 __do_kernel_faul...
In the Linux kernel, the following vulnerability has been resolved: arm64: extable: fix load_unaligned_zeropad() reg indices In ex_handler_load_unaligned_zeropad() we erroneously extract the data and addr register indices from ex->type rather than ex->data. As ex->type will contain EX_TYPE_LOAD_UNALIGNED_ZEROPAD (i.e. 4): * We'll always treat X0 as the address register, since EX_DATA_REG_ADDR is extracted from bits [9:5]. Thus, we may attempt to dereference an arbitrary address as X0 may hold an arbitrary value. * We'll always treat X4 as the data register, since EX_DATA_REG_DATA is extracted from bits [4:0]. Thus we will corrupt X4 and cause arbitrary behaviour within load_unaligned_zeropad() and its caller. Fix this by extracting both values from ex->data as originally intended. On an MTE-enabled QEMU image we are hitting the following crash: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 Call trace: fixup_exception+0xc4/0x1
In the Linux kernel, the following vulnerability has been resolved: a ...
EPSS
6.2 Medium
CVSS3
3.8 Low
CVSS2