Логотип exploitDog
Консоль
Логотип exploitDog

exploitDog

fstec логотип

BDU:2024-10414

Опубликовано: 16 сент. 2023
Источник: fstec
CVSS3: 6.6
CVSS2: 4.6
EPSS Низкий

Описание

Уязвимость компонента bpf ядра операционной системы Linux вызвана выходом операции за границы буфера в памяти. Эксплуатация уязвимости может позволить нарушителю вызвать отказ в обслуживании

Вендор

Canonical Ltd.
Сообщество свободного программного обеспечения
ООО «Ред Софт»
Red Hat Inc.

Наименование ПО

Ubuntu
Debian GNU/Linux
РЕД ОС
Red Hat Enterprise Linux
Linux

Версия ПО

20.04 LTS (Ubuntu)
11 (Debian GNU/Linux)
12 (Debian GNU/Linux)
7.3 (РЕД ОС)
22.04 LTS (Ubuntu)
9 (Red Hat Enterprise Linux)
от 5.11 до 5.15.139 включительно (Linux)
от 5.16 до 6.1.63 включительно (Linux)
от 6.2 до 6.5.12 включительно (Linux)
от 6.6 до 6.6.2 включительно (Linux)
от 4.11 до 5.10.201 включительно (Linux)

Тип ПО

Операционная система

Операционные системы и аппаратные платформы

Canonical Ltd. Ubuntu 20.04 LTS
Сообщество свободного программного обеспечения Debian GNU/Linux 11
Сообщество свободного программного обеспечения Debian GNU/Linux 12
ООО «Ред Софт» РЕД ОС 7.3
Canonical Ltd. Ubuntu 22.04 LTS
Red Hat Inc. Red Hat Enterprise Linux 9
Сообщество свободного программного обеспечения Linux от 5.10 до 5.10.202
Сообщество свободного программного обеспечения Linux от 5.15 до 5.15.140
Сообщество свободного программного обеспечения Linux от 6.1 до 6.1.64
Сообщество свободного программного обеспечения Linux от 6.5 до 6.5.13
Сообщество свободного программного обеспечения Linux 6.7 rc1
Сообщество свободного программного обеспечения Linux от 6.6 до 6.6.13

Уровень опасности уязвимости

Средний уровень опасности (базовая оценка CVSS 2.0 составляет 4,6)
Средний уровень опасности (базовая оценка CVSS 3.0 составляет 6,6)
Нет опасности уровень опасности (базовая оценка CVSS 4.0 составляет 0)

Возможные меры по устранению уязвимости

В условиях отсутствия обновлений безопасности от производителя рекомендуется придерживаться "Рекомендаций по безопасной настройке операционных систем LINUX", изложенных в методическом документе ФСТЭК России, утверждённом 25 декабря 2022 года.
Использование рекомендаций:
Для Linux:
https://git.kernel.org/stable/c/327b92e8cb527ae097961ffd1610c720481947f5
https://git.kernel.org/stable/c/6058e4829696412457729a00734969acc6fd1d18
https://git.kernel.org/stable/c/66d9111f3517f85ef2af0337ece02683ce0faf21
https://git.kernel.org/stable/c/821a7e4143af115b840ec199eb179537e18af922
https://git.kernel.org/stable/c/aa42a7cb92647786719fe9608685da345883878f
https://git.kernel.org/stable/c/cf353904a82873e952633fcac4385c2fcd3a46e1
Для РедОС:
http://repo.red-soft.ru/redos/7.3c/x86_64/updates/
Для Debian GNU/Linux:
https://security-tracker.debian.org/tracker/CVE-2023-52828
Для программных продуктов Red Hat Inc.:
https://access.redhat.com/security/cve/CVE-2023-52828
Для Ubuntu:
https://ubuntu.com/security/CVE-2023-52828

Статус уязвимости

Подтверждена производителем

Наличие эксплойта

Данные уточняются

Информация об устранении

Уязвимость устранена

Идентификаторы других систем описаний уязвимостей

EPSS

Процентиль: 21%
0.00065
Низкий

6.6 Medium

CVSS3

4.6 Medium

CVSS2

Связанные уязвимости

CVSS3: 6.6
ubuntu
около 1 года назад

In the Linux kernel, the following vulnerability has been resolved: bpf: Detect IP == ksym.end as part of BPF program Now that bpf_throw kfunc is the first such call instruction that has noreturn semantics within the verifier, this also kicks in dead code elimination in unprecedented ways. For one, any instruction following a bpf_throw call will never be marked as seen. Moreover, if a callchain ends up throwing, any instructions after the call instruction to the eventually throwing subprog in callers will also never be marked as seen. The tempting way to fix this would be to emit extra 'int3' instructions which bump the jited_len of a program, and ensure that during runtime when a program throws, we can discover its boundaries even if the call instruction to bpf_throw (or to subprogs that always throw) is emitted as the final instruction in the program. An example of such a program would be this: do_something(): ... r0 = 0 exit foo(): r1 = 0 call bpf_throw r0 = 0 exit bar(cond): if ...

CVSS3: 5.5
redhat
около 1 года назад

In the Linux kernel, the following vulnerability has been resolved: bpf: Detect IP == ksym.end as part of BPF program Now that bpf_throw kfunc is the first such call instruction that has noreturn semantics within the verifier, this also kicks in dead code elimination in unprecedented ways. For one, any instruction following a bpf_throw call will never be marked as seen. Moreover, if a callchain ends up throwing, any instructions after the call instruction to the eventually throwing subprog in callers will also never be marked as seen. The tempting way to fix this would be to emit extra 'int3' instructions which bump the jited_len of a program, and ensure that during runtime when a program throws, we can discover its boundaries even if the call instruction to bpf_throw (or to subprogs that always throw) is emitted as the final instruction in the program. An example of such a program would be this: do_something(): ... r0 = 0 exit foo(): r1 = 0 call bpf_throw r0 = 0 exit bar(cond): if ...

CVSS3: 6.6
nvd
около 1 года назад

In the Linux kernel, the following vulnerability has been resolved: bpf: Detect IP == ksym.end as part of BPF program Now that bpf_throw kfunc is the first such call instruction that has noreturn semantics within the verifier, this also kicks in dead code elimination in unprecedented ways. For one, any instruction following a bpf_throw call will never be marked as seen. Moreover, if a callchain ends up throwing, any instructions after the call instruction to the eventually throwing subprog in callers will also never be marked as seen. The tempting way to fix this would be to emit extra 'int3' instructions which bump the jited_len of a program, and ensure that during runtime when a program throws, we can discover its boundaries even if the call instruction to bpf_throw (or to subprogs that always throw) is emitted as the final instruction in the program. An example of such a program would be this: do_something(): ... r0 = 0 exit foo(): r1 = 0 call bpf_throw r0 = 0 exit bar

CVSS3: 6.6
debian
около 1 года назад

In the Linux kernel, the following vulnerability has been resolved: b ...

CVSS3: 6.6
github
около 1 года назад

In the Linux kernel, the following vulnerability has been resolved: bpf: Detect IP == ksym.end as part of BPF program Now that bpf_throw kfunc is the first such call instruction that has noreturn semantics within the verifier, this also kicks in dead code elimination in unprecedented ways. For one, any instruction following a bpf_throw call will never be marked as seen. Moreover, if a callchain ends up throwing, any instructions after the call instruction to the eventually throwing subprog in callers will also never be marked as seen. The tempting way to fix this would be to emit extra 'int3' instructions which bump the jited_len of a program, and ensure that during runtime when a program throws, we can discover its boundaries even if the call instruction to bpf_throw (or to subprogs that always throw) is emitted as the final instruction in the program. An example of such a program would be this: do_something(): ... r0 = 0 exit foo(): r1 = 0 call bpf_throw r0 = 0 exit ...

EPSS

Процентиль: 21%
0.00065
Низкий

6.6 Medium

CVSS3

4.6 Medium

CVSS2