Описание
Уязвимость мультимедийной библиотеки FFmpeg связана с выходом операции за границы буфера в памяти. Эксплуатация уязвимости может позволить нарушителю, действующему удалённо, выполнить произвольный код
Вендор
Наименование ПО
Версия ПО
Тип ПО
Операционные системы и аппаратные платформы
Уровень опасности уязвимости
Возможные меры по устранению уязвимости
Статус уязвимости
Наличие эксплойта
Информация об устранении
Идентификаторы других систем описаний уязвимостей
- CVE
EPSS
6.5 Medium
CVSS3
5 Medium
CVSS2
Связанные уязвимости
When parsing the header for a DHAV file, there's an integer underflow in offset calculation that leads to reading the duration from before the start of the allocated buffer. If we load a DHAV file that is larger than MAX_DURATION_BUFFER_SIZE bytes (0x100000) for example 0x101000 bytes, then at [0] we have size = 0x101000. At [1] we have end_buffer_size = 0x100000, and at [2] we have end_buffer_pos = 0x1000. The loop then scans backwards through the buffer looking for the dhav tag; when it is found, we'll calculate end_pos based on a 32-bit offset read from the buffer. There is subsequently a check [3] that end_pos is within the section of the file that has been copied into end_buffer, but it only correctly handles the cases where end_pos is before the start of the file or after the section copied into end_buffer, and not the case where end_pos is within the the file, but before the section copied into end_buffer. If we provide such an offset, (end_pos - end_buffer_pos) can u...
When parsing the header for a DHAV file, there's an integer underflow in offset calculation that leads to reading the duration from before the start of the allocated buffer. If we load a DHAV file that is larger than MAX_DURATION_BUFFER_SIZE bytes (0x100000) for example 0x101000 bytes, then at [0] we have size = 0x101000. At [1] we have end_buffer_size = 0x100000, and at [2] we have end_buffer_pos = 0x1000. The loop then scans backwards through the buffer looking for the dhav tag; when it is found, we'll calculate end_pos based on a 32-bit offset read from the buffer. There is subsequently a check [3] that end_pos is within the section of the file that has been copied into end_buffer, but it only correctly handles the cases where end_pos is before the start of the file or after the section copied into end_buffer, and not the case where end_pos is within the the file, but before the section copied into end_buffer. If we provide such an offset, (end_pos - end_buffer_pos) can u
When parsing the header for a DHAV file, there's an integer underflow ...
When parsing the header for a DHAV file, there's an integer underflow in offset calculation that leads to reading the duration from before the start of the allocated buffer. If we load a DHAV file that is larger than MAX_DURATION_BUFFER_SIZE bytes (0x100000) for example 0x101000 bytes, then at [0] we have size = 0x101000. At [1] we have end_buffer_size = 0x100000, and at [2] we have end_buffer_pos = 0x1000. The loop then scans backwards through the buffer looking for the dhav tag; when it is found, we'll calculate end_pos based on a 32-bit offset read from the buffer. There is subsequently a check [3] that end_pos is within the section of the file that has been copied into end_buffer, but it only correctly handles the cases where end_pos is before the start of the file or after the section copied into end_buffer, and not the case where end_pos is within the the file, but before the section copied into end_buffer. If we provide such an offset, (end_pos - end_buffer_pos) ca...
EPSS
6.5 Medium
CVSS3
5 Medium
CVSS2