Описание
Уязвимость функции cifs_sg_set_buf() ядра операционной системы Linux связана с ошибками использования памяти после ее освобождения. Эксплуатация уязвимости может позволить нарушителю вызвать отказ в обслуживании
Вендор
Наименование ПО
Версия ПО
Тип ПО
Операционные системы и аппаратные платформы
Уровень опасности уязвимости
Возможные меры по устранению уязвимости
Статус уязвимости
Наличие эксплойта
Информация об устранении
Ссылки на источники
Идентификаторы других систем описаний уязвимостей
- CVE
EPSS
6.2 Medium
CVSS3
4.9 Medium
CVSS2
Связанные уязвимости
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix crypto buffers in non-linear memory The crypto API, through the scatterlist API, expects input buffers to be in linear memory. We handle this with the cifs_sg_set_buf() helper that converts vmalloc'd memory to their corresponding pages. However, when we allocate our aead_request buffer (@creq in smb2ops.c::crypt_message()), we do so with kvzalloc(), which possibly puts aead_request->__ctx in vmalloc area. AEAD algorithm then uses ->__ctx for its private/internal data and operations, and uses sg_set_buf() for such data on a few places. This works fine as long as @creq falls into kmalloc zone (small requests) or vmalloc'd memory is still within linear range. Tasks' stacks are vmalloc'd by default (CONFIG_VMAP_STACK=y), so too many tasks will increment the base stacks' addresses to a point where virt_addr_valid(buf) will fail (BUG() in sg_set_buf()) when that happens. In practice: too many parallel re...
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix crypto buffers in non-linear memory The crypto API, through the scatterlist API, expects input buffers to be in linear memory. We handle this with the cifs_sg_set_buf() helper that converts vmalloc'd memory to their corresponding pages. However, when we allocate our aead_request buffer (@creq in smb2ops.c::crypt_message()), we do so with kvzalloc(), which possibly puts aead_request->__ctx in vmalloc area. AEAD algorithm then uses ->__ctx for its private/internal data and operations, and uses sg_set_buf() for such data on a few places. This works fine as long as @creq falls into kmalloc zone (small requests) or vmalloc'd memory is still within linear range. Tasks' stacks are vmalloc'd by default (CONFIG_VMAP_STACK=y), so too many tasks will increment the base stacks' addresses to a point where virt_addr_valid(buf) will fail (BUG() in sg_set_buf()) when that happens. In practice: too many paralle
In the Linux kernel, the following vulnerability has been resolved: s ...
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix crypto buffers in non-linear memory The crypto API, through the scatterlist API, expects input buffers to be in linear memory. We handle this with the cifs_sg_set_buf() helper that converts vmalloc'd memory to their corresponding pages. However, when we allocate our aead_request buffer (@creq in smb2ops.c::crypt_message()), we do so with kvzalloc(), which possibly puts aead_request->__ctx in vmalloc area. AEAD algorithm then uses ->__ctx for its private/internal data and operations, and uses sg_set_buf() for such data on a few places. This works fine as long as @creq falls into kmalloc zone (small requests) or vmalloc'd memory is still within linear range. Tasks' stacks are vmalloc'd by default (CONFIG_VMAP_STACK=y), so too many tasks will increment the base stacks' addresses to a point where virt_addr_valid(buf) will fail (BUG() in sg_set_buf()) when that happens. In practice: too many para...
EPSS
6.2 Medium
CVSS3
4.9 Medium
CVSS2