Описание
Division by zero in optimized pooling implementations in TFLite
Impact
Optimized pooling implementations in TFLite fail to check that the stride arguments are not 0 before calling ComputePaddingHeightWidth.
Since users can craft special models which will have params->stride_{height,width} be zero, this will result in a division by zero.
Patches
We have patched the issue in GitHub commit 5f7975d09eac0f10ed8a17dbb6f5964977725adc.
The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by members of the Aivul Team from Qihoo 360.
Ссылки
- https://github.com/tensorflow/tensorflow/security/advisories/GHSA-26j7-6w8w-7922
- https://nvd.nist.gov/vuln/detail/CVE-2021-29586
- https://github.com/tensorflow/tensorflow/commit/5f7975d09eac0f10ed8a17dbb6f5964977725adc
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-514.yaml
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-712.yaml
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-223.yaml
- https://github.com/tensorflow/tensorflow/blob/3f24ccd932546416ec906a02ddd183b48a1d2c83/tensorflow/lite/kernels/pooling.cc#L90
Пакеты
tensorflow
< 2.1.4
2.1.4
tensorflow
>= 2.2.0, < 2.2.3
2.2.3
tensorflow
>= 2.3.0, < 2.3.3
2.3.3
tensorflow
>= 2.4.0, < 2.4.2
2.4.2
tensorflow-cpu
< 2.1.4
2.1.4
tensorflow-cpu
>= 2.2.0, < 2.2.3
2.2.3
tensorflow-cpu
>= 2.3.0, < 2.3.3
2.3.3
tensorflow-cpu
>= 2.4.0, < 2.4.2
2.4.2
tensorflow-gpu
< 2.1.4
2.1.4
tensorflow-gpu
>= 2.2.0, < 2.2.3
2.2.3
tensorflow-gpu
>= 2.3.0, < 2.3.3
2.3.3
tensorflow-gpu
>= 2.4.0, < 2.4.2
2.4.2
Связанные уязвимости
TensorFlow is an end-to-end open source platform for machine learning. Optimized pooling implementations in TFLite fail to check that the stride arguments are not 0 before calling `ComputePaddingHeightWidth`(https://github.com/tensorflow/tensorflow/blob/3f24ccd932546416ec906a02ddd183b48a1d2c83/tensorflow/lite/kernels/pooling.cc#L90). Since users can craft special models which will have `params->stride_{height,width}` be zero, this will result in a division by zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. ...