Логотип exploitDog
Консоль
Логотип exploitDog

exploitDog

github логотип

GHSA-2cpx-427x-q2c6

Опубликовано: 21 мая 2021
Источник: github
Github: Прошло ревью
CVSS4: 2
CVSS3: 2.5

Описание

CHECK-fail in AddManySparseToTensorsMap

Impact

An attacker can trigger a denial of service via a CHECK-fail in tf.raw_ops.AddManySparseToTensorsMap:

import tensorflow as tf import numpy as np sparse_indices = tf.constant(530, shape=[1, 1], dtype=tf.int64) sparse_values = tf.ones([1], dtype=tf.int64) shape = tf.Variable(tf.ones([55], dtype=tf.int64)) shape[:8].assign(np.array([855, 901, 429, 892, 892, 852, 93, 96], dtype=np.int64)) tf.raw_ops.AddManySparseToTensorsMap(sparse_indices=sparse_indices, sparse_values=sparse_values, sparse_shape=shape)

This is because the implementation takes the values specified in sparse_shape as dimensions for the output shape:

TensorShape tensor_input_shape(input_shape->vec<int64>());

The TensorShape constructor uses a CHECK operation which triggers when InitDims returns a non-OK status.

template <class Shape> TensorShapeBase<Shape>::TensorShapeBase(gtl::ArraySlice<int64> dim_sizes) { set_tag(REP16); set_data_type(DT_INVALID); TF_CHECK_OK(InitDims(dim_sizes)); }

In our scenario, this occurs when adding a dimension from the argument results in overflow:

template <class Shape> Status TensorShapeBase<Shape>::InitDims(gtl::ArraySlice<int64> dim_sizes) { ... Status status = Status::OK(); for (int64 s : dim_sizes) { status.Update(AddDimWithStatus(internal::SubtleMustCopy(s))); if (!status.ok()) { return status; } } } template <class Shape> Status TensorShapeBase<Shape>::AddDimWithStatus(int64 size) { ... int64 new_num_elements; if (kIsPartial && (num_elements() < 0 || size < 0)) { new_num_elements = -1; } else { new_num_elements = MultiplyWithoutOverflow(num_elements(), size); if (TF_PREDICT_FALSE(new_num_elements < 0)) { return errors::Internal("Encountered overflow when multiplying ", num_elements(), " with ", size, ", result: ", new_num_elements); } } ... }

This is a legacy implementation of the constructor and operations should use BuildTensorShapeBase or AddDimWithStatus to prevent CHECK-failures in the presence of overflows.

Patches

We have patched the issue in GitHub commit 69c68ecbb24dff3fa0e46da0d16c821a2dd22d7c.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.

Пакеты

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

< 2.1.4

2.1.4

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

>= 2.2.0, < 2.2.3

2.2.3

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

>= 2.3.0, < 2.3.3

2.3.3

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

>= 2.4.0, < 2.4.2

2.4.2

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

< 2.1.4

2.1.4

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

>= 2.2.0, < 2.2.3

2.2.3

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

>= 2.3.0, < 2.3.3

2.3.3

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

>= 2.4.0, < 2.4.2

2.4.2

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

< 2.1.4

2.1.4

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

>= 2.2.0, < 2.2.3

2.2.3

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

>= 2.3.0, < 2.3.3

2.3.3

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

>= 2.4.0, < 2.4.2

2.4.2

EPSS

Процентиль: 2%
0.00015
Низкий

2 Low

CVSS4

2.5 Low

CVSS3

Дефекты

CWE-190

Связанные уязвимости

CVSS3: 2.5
nvd
больше 4 лет назад

TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.AddManySparseToTensorsMap`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/kernels/sparse_tensors_map_ops.cc#L257) takes the values specified in `sparse_shape` as dimensions for the output shape. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of over

CVSS3: 2.5
debian
больше 4 лет назад

TensorFlow is an end-to-end open source platform for machine learning. ...

EPSS

Процентиль: 2%
0.00015
Низкий

2 Low

CVSS4

2.5 Low

CVSS3

Дефекты

CWE-190