Логотип exploitDog
Консоль
Логотип exploitDog

exploitDog

github логотип

GHSA-3h8m-483j-7xxm

Опубликовано: 21 мая 2021
Источник: github
Github: Прошло ревью
CVSS4: 2
CVSS3: 2.5

Описание

Heap out of bounds read in RequantizationRange

Impact

The implementation of tf.raw_ops.MaxPoolGradWithArgmax can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs:

import tensorflow as tf input = tf.constant([1], shape=[1], dtype=tf.qint32) input_max = tf.constant([], dtype=tf.float32) input_min = tf.constant([], dtype=tf.float32) tf.raw_ops.RequantizationRange(input=input, input_min=input_min, input_max=input_max)

The implementation assumes that the input_min and input_max tensors have at least one element, as it accesses the first element in two arrays:

const float input_min_float = ctx->input(1).flat<float>()(0); const float input_max_float = ctx->input(2).flat<float>()(0);

If the tensors are empty, .flat<T>() is an empty object, backed by an empty array. Hence, accesing even the 0th element is a read outside the bounds.

Patches

We have patched the issue in GitHub commit ef0c008ee84bad91ec6725ddc42091e19a30cf0e.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Ying Wang and Yakun Zhang of Baidu X-Team.

Пакеты

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

< 2.1.4

2.1.4

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

>= 2.2.0, < 2.2.3

2.2.3

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

>= 2.3.0, < 2.3.3

2.3.3

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

>= 2.4.0, < 2.4.2

2.4.2

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

< 2.1.4

2.1.4

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

>= 2.2.0, < 2.2.3

2.2.3

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

>= 2.3.0, < 2.3.3

2.3.3

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

>= 2.4.0, < 2.4.2

2.4.2

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

< 2.1.4

2.1.4

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

>= 2.2.0, < 2.2.3

2.2.3

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

>= 2.3.0, < 2.3.3

2.3.3

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

>= 2.4.0, < 2.4.2

2.4.2

EPSS

Процентиль: 3%
0.00017
Низкий

2 Low

CVSS4

2.5 Low

CVSS3

Дефекты

CWE-125

Связанные уязвимости

CVSS3: 2.5
nvd
больше 4 лет назад

TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/ac328eaa3870491ababc147822cd04e91a790643/tensorflow/core/kernels/requantization_range_op.cc#L49-L50) assumes that the `input_min` and `input_max` tensors have at least one element, as it accesses the first element in two arrays. If the tensors are empty, `.flat<T>()` is an empty object, backed by an empty array. Hence, accesing even the 0th element is a read outside the bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

CVSS3: 2.5
debian
больше 4 лет назад

TensorFlow is an end-to-end open source platform for machine learning. ...

EPSS

Процентиль: 3%
0.00017
Низкий

2 Low

CVSS4

2.5 Low

CVSS3

Дефекты

CWE-125