Описание
In the Linux kernel, the following vulnerability has been resolved:
can: etas_es58x: populate ndo_change_mtu() to prevent buffer overflow
Sending an PF_PACKET allows to bypass the CAN framework logic and to directly reach the xmit() function of a CAN driver. The only check which is performed by the PF_PACKET framework is to make sure that skb->len fits the interface's MTU.
Unfortunately, because the etas_es58x driver does not populate its net_device_ops->ndo_change_mtu(), it is possible for an attacker to configure an invalid MTU by doing, for example:
$ ip link set can0 mtu 9999
After doing so, the attacker could open a PF_PACKET socket using the ETH_P_CANXL protocol:
to inject a malicious CAN XL frames. For example:
The CAN drivers' xmit() function are calling can_dev_dropped_skb() to check that the skb is valid, unfortunately under above conditions, the m...
In the Linux kernel, the following vulnerability has been resolved:
can: etas_es58x: populate ndo_change_mtu() to prevent buffer overflow
Sending an PF_PACKET allows to bypass the CAN framework logic and to directly reach the xmit() function of a CAN driver. The only check which is performed by the PF_PACKET framework is to make sure that skb->len fits the interface's MTU.
Unfortunately, because the etas_es58x driver does not populate its net_device_ops->ndo_change_mtu(), it is possible for an attacker to configure an invalid MTU by doing, for example:
$ ip link set can0 mtu 9999
After doing so, the attacker could open a PF_PACKET socket using the ETH_P_CANXL protocol:
to inject a malicious CAN XL frames. For example:
The CAN drivers' xmit() function are calling can_dev_dropped_skb() to check that the skb is valid, unfortunately under above conditions, the malicious packet is able to go through can_dev_dropped_skb() checks:
-
the skb->protocol is set to ETH_P_CANXL which is valid (the function does not check the actual device capabilities).
-
the length is a valid CAN XL length.
And so, es58x_start_xmit() receives a CAN XL frame which it is not able to correctly handle and will thus misinterpret it as a CAN(FD) frame.
This can result in a buffer overflow. For example, using the es581.4 variant, the frame will be dispatched to es581_4_tx_can_msg(), go through the last check at the beginning of this function:
and reach this line:
Here, cf->len corresponds to the flags field of the CAN XL frame. In our previous example, we set canxl_frame->flags to 0xff. Because the maximum expected length is 8, a buffer overflow of 247 bytes occurs!
Populate net_device_ops->ndo_change_mtu() to ensure that the interface's MTU can not be set to anything bigger than CAN_MTU or CANFD_MTU (depending on the device capabilities). By fixing the root cause, this prevents the buffer overflow.
Ссылки
- https://nvd.nist.gov/vuln/detail/CVE-2025-39988
- https://git.kernel.org/stable/c/38c0abad45b190a30d8284a37264d2127a6ec303
- https://git.kernel.org/stable/c/72de0facc50afdb101fb7197d880407f1abfc77f
- https://git.kernel.org/stable/c/b26cccd87dcddc47b450a40f3b1ac3fe346efcff
- https://git.kernel.org/stable/c/c4e582e686c4d683c87f2b4a316385b3d81d370f
- https://git.kernel.org/stable/c/cbc1de71766f326a44bb798aeae4a7ef4a081cc9
- https://git.kernel.org/stable/c/e587af2c89ecc6382c518febea52fa9ba81e47c0
EPSS
CVE ID
Связанные уязвимости
In the Linux kernel, the following vulnerability has been resolved: can: etas_es58x: populate ndo_change_mtu() to prevent buffer overflow Sending an PF_PACKET allows to bypass the CAN framework logic and to directly reach the xmit() function of a CAN driver. The only check which is performed by the PF_PACKET framework is to make sure that skb->len fits the interface's MTU. Unfortunately, because the etas_es58x driver does not populate its net_device_ops->ndo_change_mtu(), it is possible for an attacker to configure an invalid MTU by doing, for example: $ ip link set can0 mtu 9999 After doing so, the attacker could open a PF_PACKET socket using the ETH_P_CANXL protocol: socket(PF_PACKET, SOCK_RAW, htons(ETH_P_CANXL)); to inject a malicious CAN XL frames. For example: struct canxl_frame frame = { .flags = 0xff, .len = 2048, }; The CAN drivers' xmit() function are calling can_dev_dropped_skb() to check that the skb is valid, unfortunately under above conditions, the malicious packet is...
In the Linux kernel, the following vulnerability has been resolved: can: etas_es58x: populate ndo_change_mtu() to prevent buffer overflow Sending an PF_PACKET allows to bypass the CAN framework logic and to directly reach the xmit() function of a CAN driver. The only check which is performed by the PF_PACKET framework is to make sure that skb->len fits the interface's MTU. Unfortunately, because the etas_es58x driver does not populate its net_device_ops->ndo_change_mtu(), it is possible for an attacker to configure an invalid MTU by doing, for example: $ ip link set can0 mtu 9999 After doing so, the attacker could open a PF_PACKET socket using the ETH_P_CANXL protocol: socket(PF_PACKET, SOCK_RAW, htons(ETH_P_CANXL)); to inject a malicious CAN XL frames. For example: struct canxl_frame frame = { .flags = 0xff, .len = 2048, }; The CAN drivers' xmit() function are calling can_dev_dropped_skb() to check that the skb is valid, unfortunately under above conditions, the mali
can: etas_es58x: populate ndo_change_mtu() to prevent buffer overflow
In the Linux kernel, the following vulnerability has been resolved: c ...
EPSS