Логотип exploitDog
Консоль
Логотип exploitDog

exploitDog

github логотип

GHSA-g8wg-cjwc-xhhp

Опубликовано: 25 авг. 2021
Источник: github
Github: Прошло ревью
CVSS4: 8.4
CVSS3: 7.1

Описание

Heap OOB in nested tf.map_fn with RaggedTensors

Impact

It is possible to nest a tf.map_fn within another tf.map_fn call. However, if the input tensor is a RaggedTensor and there is no function signature provided, code assumes the output is a fully specified tensor and fills output buffer with uninitialized contents from the heap:

import tensorflow as tf x = tf.ragged.constant([[1,2,3], [4,5], [6]]) t = tf.map_fn(lambda r: tf.map_fn(lambda y: r, r), x) z = tf.ragged.constant([[[1,2,3],[1,2,3],[1,2,3]],[[4,5],[4,5]],[[6]]])

The t and z outputs should be identical, however this is not the case. The last row of t contains data from the heap which can be used to leak other memory information.

The bug lies in the conversion from a Variant tensor to a RaggedTensor. The implementation does not check that all inner shapes match and this results in the additional dimensions in the above example.

The same implementation can result in data loss, if input tensor is tweaked:

import tensorflow as tf x = tf.ragged.constant([[1,2], [3,4,5], [6]]) t = tf.map_fn(lambda r: tf.map_fn(lambda y: r, r), x)

Here, the output tensor will only have 2 elements for each inner dimension.

Patches

We have patched the issue in GitHub commit 4e2565483d0ffcadc719bd44893fb7f609bb5f12.

The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Haris Sahovic.

Пакеты

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

< 2.3.4

2.3.4

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

>= 2.4.0, < 2.4.3

2.4.3

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

= 2.5.0

2.5.1

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

< 2.3.4

2.3.4

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

>= 2.4.0, < 2.4.3

2.4.3

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

= 2.5.0

2.5.1

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

< 2.3.4

2.3.4

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

>= 2.4.0, < 2.4.3

2.4.3

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

= 2.5.0

2.5.1

EPSS

Процентиль: 13%
0.00042
Низкий

8.4 High

CVSS4

7.1 High

CVSS3

Дефекты

CWE-125
CWE-681

Связанные уязвимости

CVSS3: 7.1
nvd
больше 4 лет назад

TensorFlow is an end-to-end open source platform for machine learning. In affected versions it is possible to nest a `tf.map_fn` within another `tf.map_fn` call. However, if the input tensor is a `RaggedTensor` and there is no function signature provided, code assumes the output is a fully specified tensor and fills output buffer with uninitialized contents from the heap. The `t` and `z` outputs should be identical, however this is not the case. The last row of `t` contains data from the heap which can be used to leak other memory information. The bug lies in the conversion from a `Variant` tensor to a `RaggedTensor`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_from_variant_op.cc#L177-L190) does not check that all inner shapes match and this results in the additional dimensions. The same implementation can result in data loss, if input tensor is tweaked. We have patched the issue in Gi

CVSS3: 7.1
debian
больше 4 лет назад

TensorFlow is an end-to-end open source platform for machine learning. ...

suse-cvrf
больше 3 лет назад

Security update for tensorflow2

EPSS

Процентиль: 13%
0.00042
Низкий

8.4 High

CVSS4

7.1 High

CVSS3

Дефекты

CWE-125
CWE-681