Логотип exploitDog
Консоль
Логотип exploitDog

exploitDog

github логотип

GHSA-h6q3-vv32-2cq5

Опубликовано: 21 нояб. 2022
Источник: github
Github: Прошло ревью
CVSS3: 7.1

Описание

Buffer overflow in CONV_3D_TRANSPOSE on TFLite

Impact

The reference kernel of the CONV_3D_TRANSPOSE TensorFlow Lite operator wrongly increments the data_ptr when adding the bias to the result.

Instead of data_ptr += num_channels; it should be data_ptr += output_num_channels; as if the number of input channels is different than the number of output channels, the wrong result will be returned and a buffer overflow will occur if num_channels > output_num_channels.

An attacker can craft a model with a specific number of input channels in a way similar to the attached example script. It is then possible to write specific values through the bias of the layer outside the bounds of the buffer. This attack only works if the reference kernel resolver is used in the interpreter (i.e. experimental_op_resolver_type=tf.lite.experimental.OpResolverType.BUILTIN_REF is used).

import tensorflow as tf model = tf.keras.Sequential( [ tf.keras.layers.InputLayer(input_shape=(2, 2, 2, 1024), batch_size=1), tf.keras.layers.Conv3DTranspose( filters=8, kernel_size=(2, 2, 2), padding="same", data_format="channels_last", ), ] ) converter = tf.lite.TFLiteConverter.from_keras_model(model) tflite_model = converter.convert() interpreter = tf.lite.Interpreter( model_content=tflite_model, experimental_op_resolver_type=tf.lite.experimental.OpResolverType.BUILTIN_REF, ) interpreter.allocate_tensors() interpreter.set_tensor( interpreter.get_input_details()[0]["index"], tf.zeros(shape=[1, 2, 2, 2, 1024]) ) interpreter.invoke()

Patches

We have patched the issue in GitHub commit 72c0bdcb25305b0b36842d746cc61d72658d2941.

The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Thibaut Goetghebuer-Planchon, Arm Ltd.

Пакеты

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

< 2.8.4

2.8.4

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

>= 2.9.0, < 2.9.3

2.9.3

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

>= 2.10.0, < 2.10.1

2.10.1

EPSS

Процентиль: 44%
0.00215
Низкий

7.1 High

CVSS3

Дефекты

CWE-120

Связанные уязвимости

CVSS3: 7.1
nvd
около 3 лет назад

TensorFlow is an open source platform for machine learning. The reference kernel of the `CONV_3D_TRANSPOSE` TensorFlow Lite operator wrongly increments the data_ptr when adding the bias to the result. Instead of `data_ptr += num_channels;` it should be `data_ptr += output_num_channels;` as if the number of input channels is different than the number of output channels, the wrong result will be returned and a buffer overflow will occur if num_channels > output_num_channels. An attacker can craft a model with a specific number of input channels. It is then possible to write specific values through the bias of the layer outside the bounds of the buffer. This attack only works if the reference kernel resolver is used in the interpreter. We have patched the issue in GitHub commit 72c0bdcb25305b0b36842d746cc61d72658d2941. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in

CVSS3: 8.1
msrc
около 3 лет назад

Buffer overflow in `CONV_3D_TRANSPOSE` on TFLite

CVSS3: 7.1
debian
около 3 лет назад

TensorFlow is an open source platform for machine learning. The refere ...

EPSS

Процентиль: 44%
0.00215
Низкий

7.1 High

CVSS3

Дефекты

CWE-120