Логотип exploitDog
Консоль
Логотип exploitDog

exploitDog

github логотип

GHSA-mg66-qvc5-rm93

Опубликовано: 24 мая 2022
Источник: github
Github: Прошло ревью
CVSS3: 5.5

Описание

Missing validation causes denial of service via SparseTensorToCSRSparseMatrix

Impact

The implementation of tf.raw_ops.SparseTensorToCSRSparseMatrix does not fully validate the input arguments. This results in a CHECK-failure which can be used to trigger a denial of service attack:

import tensorflow as tf indices = tf.constant(53, shape=[3], dtype=tf.int64) values = tf.constant(0.554979503, shape=[218650], dtype=tf.float32) dense_shape = tf.constant(53, shape=[3], dtype=tf.int64) tf.raw_ops.SparseTensorToCSRSparseMatrix( indices=indices, values=values, dense_shape=dense_shape)

The code assumes dense_shape is a vector and indices is a matrix (as part of requirements for sparse tensors) but there is no validation for this:

const Tensor& indices = ctx->input(0); const Tensor& values = ctx->input(1); const Tensor& dense_shape = ctx->input(2); const int rank = dense_shape.NumElements(); OP_REQUIRES(ctx, rank == 2 || rank == 3, errors::InvalidArgument("SparseTensor must have rank 2 or 3; ", "but indices has rank: ", rank)); auto dense_shape_vec = dense_shape.vec<int64_t>(); // ... OP_REQUIRES_OK( ctx, coo_to_csr(batch_size, num_rows, indices.template matrix<int64_t>(), batch_ptr.vec<int32>(), csr_row_ptr.vec<int32>(), csr_col_ind.vec<int32>()));

Patches

We have patched the issue in GitHub commit ea50a40e84f6bff15a0912728e35b657548cef11.

The fix will be included in TensorFlow 2.9.0. We will also cherrypick this commit on TensorFlow 2.8.1, TensorFlow 2.7.2, and TensorFlow 2.6.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Neophytos Christou from Secure Systems Lab at Brown University.

Пакеты

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

< 2.6.4

2.6.4

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

>= 2.7.0, < 2.7.2

2.7.2

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

>= 2.8.0, < 2.8.1

2.8.1

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

< 2.6.4

2.6.4

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

>= 2.7.0, < 2.7.2

2.7.2

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

>= 2.8.0, < 2.8.1

2.8.1

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

< 2.6.4

2.6.4

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

>= 2.7.0, < 2.7.2

2.7.2

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

>= 2.8.0, < 2.8.1

2.8.1

EPSS

Процентиль: 13%
0.00044
Низкий

5.5 Medium

CVSS3

Дефекты

CWE-20

Связанные уязвимости

CVSS3: 5.5
nvd
больше 3 лет назад

TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SparseTensorToCSRSparseMatrix` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `dense_shape` is a vector and `indices` is a matrix (as part of requirements for sparse tensors) but there is no validation for this. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.

CVSS3: 5.5
debian
больше 3 лет назад

TensorFlow is an open source platform for machine learning. Prior to v ...

EPSS

Процентиль: 13%
0.00044
Низкий

5.5 Medium

CVSS3

Дефекты

CWE-20