Логотип exploitDog
Консоль
Логотип exploitDog

exploitDog

github логотип

GHSA-p2cq-cprg-frvm

Опубликовано: 25 сент. 2020
Источник: github
Github: Прошло ревью
CVSS4: 9.1
CVSS3: 8.1

Описание

Out of bounds write in tensorflow-lite

Impact

In TensorFlow Lite models using segment sum can trigger a write out bounds / segmentation fault if the segment ids are not sorted. Code assumes that the segment ids are in increasing order, using the last element of the tensor holding them to determine the dimensionality of output tensor: https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/lite/kernels/segment_sum.cc#L39-L44

This results in allocating insufficient memory for the output tensor and in a write outside the bounds of the output array: https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/lite/kernels/internal/reference/reference_ops.h#L2625-L2631

This usually results in a segmentation fault, but depending on runtime conditions it can provide for a write gadget to be used in future memory corruption-based exploits.

Patches

We have patched the issue in 204945b and will release patch releases for all affected versions.

We recommend users to upgrade to TensorFlow 2.2.1, or 2.3.1.

Workarounds

A potential workaround would be to add a custom Verifier to the model loading code to ensure that the segment ids are sorted, although this only handles the case when the segment ids are stored statically in the model.

A similar validation could be done if the segment ids are generated at runtime between inference steps.

If the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by members of the Aivul Team from Qihoo 360.

Пакеты

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

= 2.2.0

2.2.1

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

= 2.3.0

2.3.1

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

= 2.2.0

2.2.1

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

= 2.3.0

2.3.1

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

= 2.2.0

2.2.1

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

= 2.3.0

2.3.1

EPSS

Процентиль: 49%
0.00261
Низкий

9.1 Critical

CVSS4

8.1 High

CVSS3

Дефекты

CWE-787

Связанные уязвимости

CVSS3: 8.1
nvd
больше 5 лет назад

In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger a write out bounds / segmentation fault if the segment ids are not sorted. Code assumes that the segment ids are in increasing order, using the last element of the tensor holding them to determine the dimensionality of output tensor. This results in allocating insufficient memory for the output tensor and in a write outside the bounds of the output array. This usually results in a segmentation fault, but depending on runtime conditions it can provide for a write gadget to be used in future memory corruption-based exploits. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that the segment ids are sorted, although this only handles the case when the segment ids are stored statically in the model. A similar validation could be don

CVSS3: 8.1
debian
больше 5 лет назад

In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segme ...

EPSS

Процентиль: 49%
0.00261
Низкий

9.1 Critical

CVSS4

8.1 High

CVSS3

Дефекты

CWE-787