Логотип exploitDog
Консоль
Логотип exploitDog

exploitDog

github логотип

GHSA-v82p-hv3v-p6qp

Опубликовано: 25 авг. 2021
Источник: github
Github: Прошло ревью
CVSS4: 8.5
CVSS3: 7.8

Описание

Incomplete validation in MKL requantization

Impact

Due to incomplete validation in MKL implementation of requantization, an attacker can trigger undefined behavior via binding a reference to a null pointer or can access data outside the bounds of heap allocated arrays:

import tensorflow as tf tf.raw_ops.RequantizationRangePerChannel( input=[], input_min=[0,0,0,0,0], input_max=[1,1,1,1,1], clip_value_max=1)

The implementation does not validate the dimensions of the input tensor.

A similar issue occurs in MklRequantizePerChannelOp:

import tensorflow as tf from tensorflow.python.ops import gen_math_ops gen_math_ops.requantize_per_channel( input=[], input_min=[-100,-100,-100,-100,-100], input_max=[-100,-100,-100], requested_output_min=[-100,-100,-100,-100,-100], requested_output_max=[], out_type=tf.int)

The implementation does not perform full validation for all the input arguments.

Patches

We have patched the issue in GitHub commit 9e62869465573cb2d9b5053f1fa02a81fce21d69 and in the Github commit 203214568f5bc237603dbab6e1fd389f1572f5c9.

The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by members of the Aivul Team from Qihoo 360.

Пакеты

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

< 2.3.4

2.3.4

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

>= 2.4.0, < 2.4.3

2.4.3

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

= 2.5.0

2.5.1

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

< 2.3.4

2.3.4

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

>= 2.4.0, < 2.4.3

2.4.3

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

= 2.5.0

2.5.1

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

< 2.3.4

2.3.4

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

>= 2.4.0, < 2.4.3

2.4.3

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

= 2.5.0

2.5.1

EPSS

Процентиль: 11%
0.00037
Низкий

8.5 High

CVSS4

7.8 High

CVSS3

Дефекты

CWE-20

Связанные уязвимости

CVSS3: 7.8
nvd
больше 4 лет назад

TensorFlow is an end-to-end open source platform for machine learning. In affected versions due to incomplete validation in MKL implementation of requantization, an attacker can trigger undefined behavior via binding a reference to a null pointer or can access data outside the bounds of heap allocated arrays. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/mkl/mkl_requantization_range_per_channel_op.cc) does not validate the dimensions of the `input` tensor. A similar issue occurs in `MklRequantizePerChannelOp`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/mkl/mkl_requantize_per_channel_op.cc) does not perform full validation for all the input arguments. We have patched the issue in GitHub commit 9e62869465573cb2d9b5053f1fa02a81fce21d69 and in the Github commit 203214568f5bc237603dbab6e1fd389f1572f5c9. The fix will be

CVSS3: 7.8
debian
больше 4 лет назад

TensorFlow is an end-to-end open source platform for machine learning. ...

suse-cvrf
больше 3 лет назад

Security update for tensorflow2

EPSS

Процентиль: 11%
0.00037
Низкий

8.5 High

CVSS4

7.8 High

CVSS3

Дефекты

CWE-20