Описание
In the Linux kernel, the following vulnerability has been resolved:
net/sched: taprio: avoid disabling offload when it was never enabled
In an incredibly strange API design decision, qdisc->destroy() gets called even if qdisc->init() never succeeded, not exclusively since commit 87b60cfacf9f ("net_sched: fix error recovery at qdisc creation"), but apparently also earlier (in the case of qdisc_create_dflt()).
The taprio qdisc does not fully acknowledge this when it attempts full offload, because it starts off with q->flags = TAPRIO_FLAGS_INVALID in taprio_init(), then it replaces q->flags with TCA_TAPRIO_ATTR_FLAGS parsed from netlink (in taprio_change(), tail called from taprio_init()).
But in taprio_destroy(), we call taprio_disable_offload(), and this determines what to do based on FULL_OFFLOAD_IS_ENABLED(q->flags).
But looking at the implementation of FULL_OFFLOAD_IS_ENABLED() (a bitwise check of bit 1 in q->flags), it is invalid to call this macro on q->flags when it contai...
In the Linux kernel, the following vulnerability has been resolved:
net/sched: taprio: avoid disabling offload when it was never enabled
In an incredibly strange API design decision, qdisc->destroy() gets called even if qdisc->init() never succeeded, not exclusively since commit 87b60cfacf9f ("net_sched: fix error recovery at qdisc creation"), but apparently also earlier (in the case of qdisc_create_dflt()).
The taprio qdisc does not fully acknowledge this when it attempts full offload, because it starts off with q->flags = TAPRIO_FLAGS_INVALID in taprio_init(), then it replaces q->flags with TCA_TAPRIO_ATTR_FLAGS parsed from netlink (in taprio_change(), tail called from taprio_init()).
But in taprio_destroy(), we call taprio_disable_offload(), and this determines what to do based on FULL_OFFLOAD_IS_ENABLED(q->flags).
But looking at the implementation of FULL_OFFLOAD_IS_ENABLED() (a bitwise check of bit 1 in q->flags), it is invalid to call this macro on q->flags when it contains TAPRIO_FLAGS_INVALID, because that is set to U32_MAX, and therefore FULL_OFFLOAD_IS_ENABLED() will return true on an invalid set of flags.
As a result, it is possible to crash the kernel if user space forces an error between setting q->flags = TAPRIO_FLAGS_INVALID, and the calling of taprio_enable_offload(). This is because drivers do not expect the offload to be disabled when it was never enabled.
The error that we force here is to attach taprio as a non-root qdisc, but instead as child of an mqprio root qdisc:
$ tc qdisc add dev swp0 root handle 1:
mqprio num_tc 8 map 0 1 2 3 4 5 6 7
queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw 0
$ tc qdisc replace dev swp0 parent 1:1
taprio num_tc 8 map 0 1 2 3 4 5 6 7
queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0
sched-entry S 0x7f 990000 sched-entry S 0x80 100000
flags 0x0 clockid CLOCK_TAI
Unable to handle kernel paging request at virtual address fffffffffffffff8
[fffffffffffffff8] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 96000004 [#1] PREEMPT SMP
Call trace:
taprio_dump+0x27c/0x310
vsc9959_port_setup_tc+0x1f4/0x460
felix_port_setup_tc+0x24/0x3c
dsa_slave_setup_tc+0x54/0x27c
taprio_disable_offload.isra.0+0x58/0xe0
taprio_destroy+0x80/0x104
qdisc_create+0x240/0x470
tc_modify_qdisc+0x1fc/0x6b0
rtnetlink_rcv_msg+0x12c/0x390
netlink_rcv_skb+0x5c/0x130
rtnetlink_rcv+0x1c/0x2c
Fix this by keeping track of the operations we made, and undo the offload only if we actually did it.
I've added "bool offloaded" inside a 4 byte hole between "int clockid" and "atomic64_t picos_per_byte". Now the first cache line looks like below:
$ pahole -C taprio_sched net/sched/sch_taprio.o struct taprio_sched { struct Qdisc * * qdiscs; /* 0 8 / struct Qdisc * root; / 8 8 / u32 flags; / 16 4 / enum tk_offsets tk_offset; / 20 4 / int clockid; / 24 4 / bool offloaded; / 28 1 */
Ссылки
- https://nvd.nist.gov/vuln/detail/CVE-2022-48644
- https://git.kernel.org/stable/c/586def6ebed195f3594a4884f7c5334d0e1ad1bb
- https://git.kernel.org/stable/c/c7c9c7eb305ab8b4e93e4e4e1b78d8cfcbc26323
- https://git.kernel.org/stable/c/d12a1eb07003e597077329767c6aa86a7e972c76
- https://git.kernel.org/stable/c/db46e3a88a09c5cf7e505664d01da7238cd56c92
- https://git.kernel.org/stable/c/f58e43184226e5e9662088ccf1389e424a3a4cbd
EPSS
CVE ID
Связанные уязвимости
In the Linux kernel, the following vulnerability has been resolved: net/sched: taprio: avoid disabling offload when it was never enabled In an incredibly strange API design decision, qdisc->destroy() gets called even if qdisc->init() never succeeded, not exclusively since commit 87b60cfacf9f ("net_sched: fix error recovery at qdisc creation"), but apparently also earlier (in the case of qdisc_create_dflt()). The taprio qdisc does not fully acknowledge this when it attempts full offload, because it starts off with q->flags = TAPRIO_FLAGS_INVALID in taprio_init(), then it replaces q->flags with TCA_TAPRIO_ATTR_FLAGS parsed from netlink (in taprio_change(), tail called from taprio_init()). But in taprio_destroy(), we call taprio_disable_offload(), and this determines what to do based on FULL_OFFLOAD_IS_ENABLED(q->flags). But looking at the implementation of FULL_OFFLOAD_IS_ENABLED() (a bitwise check of bit 1 in q->flags), it is invalid to call this macro on q->flags when it contains TA...
In the Linux kernel, the following vulnerability has been resolved: net/sched: taprio: avoid disabling offload when it was never enabled In an incredibly strange API design decision, qdisc->destroy() gets called even if qdisc->init() never succeeded, not exclusively since commit 87b60cfacf9f ("net_sched: fix error recovery at qdisc creation"), but apparently also earlier (in the case of qdisc_create_dflt()). The taprio qdisc does not fully acknowledge this when it attempts full offload, because it starts off with q->flags = TAPRIO_FLAGS_INVALID in taprio_init(), then it replaces q->flags with TCA_TAPRIO_ATTR_FLAGS parsed from netlink (in taprio_change(), tail called from taprio_init()). But in taprio_destroy(), we call taprio_disable_offload(), and this determines what to do based on FULL_OFFLOAD_IS_ENABLED(q->flags). But looking at the implementation of FULL_OFFLOAD_IS_ENABLED() (a bitwise check of bit 1 in q->flags), it is invalid to call this macro on q->flags when it contains TA...
In the Linux kernel, the following vulnerability has been resolved: net/sched: taprio: avoid disabling offload when it was never enabled In an incredibly strange API design decision, qdisc->destroy() gets called even if qdisc->init() never succeeded, not exclusively since commit 87b60cfacf9f ("net_sched: fix error recovery at qdisc creation"), but apparently also earlier (in the case of qdisc_create_dflt()). The taprio qdisc does not fully acknowledge this when it attempts full offload, because it starts off with q->flags = TAPRIO_FLAGS_INVALID in taprio_init(), then it replaces q->flags with TCA_TAPRIO_ATTR_FLAGS parsed from netlink (in taprio_change(), tail called from taprio_init()). But in taprio_destroy(), we call taprio_disable_offload(), and this determines what to do based on FULL_OFFLOAD_IS_ENABLED(q->flags). But looking at the implementation of FULL_OFFLOAD_IS_ENABLED() (a bitwise check of bit 1 in q->flags), it is invalid to call this macro on q->flags when it contains
In the Linux kernel, the following vulnerability has been resolved: n ...
Уязвимость компонентов net/sched ядра операционной системы Linux, позволяющая нарушителю вызвать отказ в обслуживании
EPSS