Логотип exploitDog
Консоль
Логотип exploitDog

exploitDog

github логотип

GHSA-w83r-gj25-6vrc

Опубликовано: 08 нояб. 2024
Источник: github
Github: Не прошло ревью
CVSS3: 7.8

Описание

In the Linux kernel, the following vulnerability has been resolved:

bpf, arm64: Fix address emission with tag-based KASAN enabled

When BPF_TRAMP_F_CALL_ORIG is enabled, the address of a bpf_tramp_image struct on the stack is passed during the size calculation pass and an address on the heap is passed during code generation. This may cause a heap buffer overflow if the heap address is tagged because emit_a64_mov_i64() will emit longer code than it did during the size calculation pass. The same problem could occur without tag-based KASAN if one of the 16-bit words of the stack address happened to be all-ones during the size calculation pass. Fix the problem by assuming the worst case (4 instructions) when calculating the size of the bpf_tramp_image address emission.

In the Linux kernel, the following vulnerability has been resolved:

bpf, arm64: Fix address emission with tag-based KASAN enabled

When BPF_TRAMP_F_CALL_ORIG is enabled, the address of a bpf_tramp_image struct on the stack is passed during the size calculation pass and an address on the heap is passed during code generation. This may cause a heap buffer overflow if the heap address is tagged because emit_a64_mov_i64() will emit longer code than it did during the size calculation pass. The same problem could occur without tag-based KASAN if one of the 16-bit words of the stack address happened to be all-ones during the size calculation pass. Fix the problem by assuming the worst case (4 instructions) when calculating the size of the bpf_tramp_image address emission.

EPSS

Процентиль: 8%
0.0003
Низкий

7.8 High

CVSS3

Дефекты

CWE-787

Связанные уязвимости

CVSS3: 7.8
ubuntu
около 1 года назад

In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix address emission with tag-based KASAN enabled When BPF_TRAMP_F_CALL_ORIG is enabled, the address of a bpf_tramp_image struct on the stack is passed during the size calculation pass and an address on the heap is passed during code generation. This may cause a heap buffer overflow if the heap address is tagged because emit_a64_mov_i64() will emit longer code than it did during the size calculation pass. The same problem could occur without tag-based KASAN if one of the 16-bit words of the stack address happened to be all-ones during the size calculation pass. Fix the problem by assuming the worst case (4 instructions) when calculating the size of the bpf_tramp_image address emission.

CVSS3: 6.7
redhat
около 1 года назад

In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix address emission with tag-based KASAN enabled When BPF_TRAMP_F_CALL_ORIG is enabled, the address of a bpf_tramp_image struct on the stack is passed during the size calculation pass and an address on the heap is passed during code generation. This may cause a heap buffer overflow if the heap address is tagged because emit_a64_mov_i64() will emit longer code than it did during the size calculation pass. The same problem could occur without tag-based KASAN if one of the 16-bit words of the stack address happened to be all-ones during the size calculation pass. Fix the problem by assuming the worst case (4 instructions) when calculating the size of the bpf_tramp_image address emission.

CVSS3: 7.8
nvd
около 1 года назад

In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix address emission with tag-based KASAN enabled When BPF_TRAMP_F_CALL_ORIG is enabled, the address of a bpf_tramp_image struct on the stack is passed during the size calculation pass and an address on the heap is passed during code generation. This may cause a heap buffer overflow if the heap address is tagged because emit_a64_mov_i64() will emit longer code than it did during the size calculation pass. The same problem could occur without tag-based KASAN if one of the 16-bit words of the stack address happened to be all-ones during the size calculation pass. Fix the problem by assuming the worst case (4 instructions) when calculating the size of the bpf_tramp_image address emission.

CVSS3: 7.8
debian
около 1 года назад

In the Linux kernel, the following vulnerability has been resolved: b ...

CVSS3: 7.8
fstec
около 1 года назад

Уязвимость функции prepare_trampoline() модуля arch/arm64/net/bpf_jit_comp.c ядра операционной системы Linux, позволяющая нарушителю оказать воздействие на конфиденциальность, целостность и доступность защищаемой информации

EPSS

Процентиль: 8%
0.0003
Низкий

7.8 High

CVSS3

Дефекты

CWE-787