Логотип exploitDog
Консоль
Логотип exploitDog

exploitDog

msrc логотип

CVE-2022-50002

Опубликовано: 15 нояб. 2025
Источник: msrc
CVSS3: 5.5
EPSS Низкий

Описание

net/mlx5: LAG, fix logic over MLX5_LAG_FLAG_NDEVS_READY

EPSS

Процентиль: 6%
0.00025
Низкий

5.5 Medium

CVSS3

Связанные уязвимости

CVSS3: 5.5
ubuntu
8 месяцев назад

In the Linux kernel, the following vulnerability has been resolved: net/mlx5: LAG, fix logic over MLX5_LAG_FLAG_NDEVS_READY Only set MLX5_LAG_FLAG_NDEVS_READY if both netdevices are registered. Doing so guarantees that both ldev->pf[MLX5_LAG_P0].dev and ldev->pf[MLX5_LAG_P1].dev have valid pointers when MLX5_LAG_FLAG_NDEVS_READY is set. The core issue is asymmetry in setting MLX5_LAG_FLAG_NDEVS_READY and clearing it. Setting it is done wrongly when both ldev->pf[MLX5_LAG_P0].dev and ldev->pf[MLX5_LAG_P1].dev are set; clearing it is done right when either of ldev->pf[i].netdev is cleared. Consider the following scenario: 1. PF0 loads and sets ldev->pf[MLX5_LAG_P0].dev to a valid pointer 2. PF1 loads and sets both ldev->pf[MLX5_LAG_P1].dev and ldev->pf[MLX5_LAG_P1].netdev with valid pointers. This results in MLX5_LAG_FLAG_NDEVS_READY is set. 3. PF0 is unloaded before setting dev->pf[MLX5_LAG_P0].netdev. MLX5_LAG_FLAG_NDEVS_READY remains set. Further execution of mlx5_do_bond() will re...

CVSS3: 5.3
redhat
8 месяцев назад

In the Linux kernel, the following vulnerability has been resolved: net/mlx5: LAG, fix logic over MLX5_LAG_FLAG_NDEVS_READY Only set MLX5_LAG_FLAG_NDEVS_READY if both netdevices are registered. Doing so guarantees that both ldev->pf[MLX5_LAG_P0].dev and ldev->pf[MLX5_LAG_P1].dev have valid pointers when MLX5_LAG_FLAG_NDEVS_READY is set. The core issue is asymmetry in setting MLX5_LAG_FLAG_NDEVS_READY and clearing it. Setting it is done wrongly when both ldev->pf[MLX5_LAG_P0].dev and ldev->pf[MLX5_LAG_P1].dev are set; clearing it is done right when either of ldev->pf[i].netdev is cleared. Consider the following scenario: 1. PF0 loads and sets ldev->pf[MLX5_LAG_P0].dev to a valid pointer 2. PF1 loads and sets both ldev->pf[MLX5_LAG_P1].dev and ldev->pf[MLX5_LAG_P1].netdev with valid pointers. This results in MLX5_LAG_FLAG_NDEVS_READY is set. 3. PF0 is unloaded before setting dev->pf[MLX5_LAG_P0].netdev. MLX5_LAG_FLAG_NDEVS_READY remains set. Further execution of mlx5_do_bond() will re...

CVSS3: 5.5
nvd
8 месяцев назад

In the Linux kernel, the following vulnerability has been resolved: net/mlx5: LAG, fix logic over MLX5_LAG_FLAG_NDEVS_READY Only set MLX5_LAG_FLAG_NDEVS_READY if both netdevices are registered. Doing so guarantees that both ldev->pf[MLX5_LAG_P0].dev and ldev->pf[MLX5_LAG_P1].dev have valid pointers when MLX5_LAG_FLAG_NDEVS_READY is set. The core issue is asymmetry in setting MLX5_LAG_FLAG_NDEVS_READY and clearing it. Setting it is done wrongly when both ldev->pf[MLX5_LAG_P0].dev and ldev->pf[MLX5_LAG_P1].dev are set; clearing it is done right when either of ldev->pf[i].netdev is cleared. Consider the following scenario: 1. PF0 loads and sets ldev->pf[MLX5_LAG_P0].dev to a valid pointer 2. PF1 loads and sets both ldev->pf[MLX5_LAG_P1].dev and ldev->pf[MLX5_LAG_P1].netdev with valid pointers. This results in MLX5_LAG_FLAG_NDEVS_READY is set. 3. PF0 is unloaded before setting dev->pf[MLX5_LAG_P0].netdev. MLX5_LAG_FLAG_NDEVS_READY remains set. Further execution of mlx5_do_bon

CVSS3: 5.5
debian
8 месяцев назад

In the Linux kernel, the following vulnerability has been resolved: n ...

CVSS3: 5.5
github
8 месяцев назад

In the Linux kernel, the following vulnerability has been resolved: net/mlx5: LAG, fix logic over MLX5_LAG_FLAG_NDEVS_READY Only set MLX5_LAG_FLAG_NDEVS_READY if both netdevices are registered. Doing so guarantees that both ldev->pf[MLX5_LAG_P0].dev and ldev->pf[MLX5_LAG_P1].dev have valid pointers when MLX5_LAG_FLAG_NDEVS_READY is set. The core issue is asymmetry in setting MLX5_LAG_FLAG_NDEVS_READY and clearing it. Setting it is done wrongly when both ldev->pf[MLX5_LAG_P0].dev and ldev->pf[MLX5_LAG_P1].dev are set; clearing it is done right when either of ldev->pf[i].netdev is cleared. Consider the following scenario: 1. PF0 loads and sets ldev->pf[MLX5_LAG_P0].dev to a valid pointer 2. PF1 loads and sets both ldev->pf[MLX5_LAG_P1].dev and ldev->pf[MLX5_LAG_P1].netdev with valid pointers. This results in MLX5_LAG_FLAG_NDEVS_READY is set. 3. PF0 is unloaded before setting dev->pf[MLX5_LAG_P0].netdev. MLX5_LAG_FLAG_NDEVS_READY remains set. Further execution of mlx5_do_...

EPSS

Процентиль: 6%
0.00025
Низкий

5.5 Medium

CVSS3