Логотип exploitDog
Консоль
Логотип exploitDog

exploitDog

msrc логотип

CVE-2025-38097

Опубликовано: 07 авг. 2025
Источник: msrc
EPSS Низкий

Описание

Описание отсутствует

Возможность эксплуатации

DOS

N/A

EPSS

Процентиль: 5%
0.00026
Низкий

Связанные уязвимости

ubuntu
около 2 месяцев назад

In the Linux kernel, the following vulnerability has been resolved: espintcp: remove encap socket caching to avoid reference leak The current scheme for caching the encap socket can lead to reference leaks when we try to delete the netns. The reference chain is: xfrm_state -> enacp_sk -> netns Since the encap socket is a userspace socket, it holds a reference on the netns. If we delete the espintcp state (through flush or individual delete) before removing the netns, the reference on the socket is dropped and the netns is correctly deleted. Otherwise, the netns may not be reachable anymore (if all processes within the ns have terminated), so we cannot delete the xfrm state to drop its reference on the socket. This patch results in a small (~2% in my tests) performance regression. A GC-type mechanism could be added for the socket cache, to clear references if the state hasn't been used "recently", but it's a lot more complex than just not caching the socket.

CVSS3: 5.5
redhat
около 2 месяцев назад

In the Linux kernel, the following vulnerability has been resolved: espintcp: remove encap socket caching to avoid reference leak The current scheme for caching the encap socket can lead to reference leaks when we try to delete the netns. The reference chain is: xfrm_state -> enacp_sk -> netns Since the encap socket is a userspace socket, it holds a reference on the netns. If we delete the espintcp state (through flush or individual delete) before removing the netns, the reference on the socket is dropped and the netns is correctly deleted. Otherwise, the netns may not be reachable anymore (if all processes within the ns have terminated), so we cannot delete the xfrm state to drop its reference on the socket. This patch results in a small (~2% in my tests) performance regression. A GC-type mechanism could be added for the socket cache, to clear references if the state hasn't been used "recently", but it's a lot more complex than just not caching the socket.

nvd
около 2 месяцев назад

In the Linux kernel, the following vulnerability has been resolved: espintcp: remove encap socket caching to avoid reference leak The current scheme for caching the encap socket can lead to reference leaks when we try to delete the netns. The reference chain is: xfrm_state -> enacp_sk -> netns Since the encap socket is a userspace socket, it holds a reference on the netns. If we delete the espintcp state (through flush or individual delete) before removing the netns, the reference on the socket is dropped and the netns is correctly deleted. Otherwise, the netns may not be reachable anymore (if all processes within the ns have terminated), so we cannot delete the xfrm state to drop its reference on the socket. This patch results in a small (~2% in my tests) performance regression. A GC-type mechanism could be added for the socket cache, to clear references if the state hasn't been used "recently", but it's a lot more complex than just not caching the socket.

debian
около 2 месяцев назад

In the Linux kernel, the following vulnerability has been resolved: e ...

github
около 2 месяцев назад

In the Linux kernel, the following vulnerability has been resolved: espintcp: remove encap socket caching to avoid reference leak The current scheme for caching the encap socket can lead to reference leaks when we try to delete the netns. The reference chain is: xfrm_state -> enacp_sk -> netns Since the encap socket is a userspace socket, it holds a reference on the netns. If we delete the espintcp state (through flush or individual delete) before removing the netns, the reference on the socket is dropped and the netns is correctly deleted. Otherwise, the netns may not be reachable anymore (if all processes within the ns have terminated), so we cannot delete the xfrm state to drop its reference on the socket. This patch results in a small (~2% in my tests) performance regression. A GC-type mechanism could be added for the socket cache, to clear references if the state hasn't been used "recently", but it's a lot more complex than just not caching the socket.

EPSS

Процентиль: 5%
0.00026
Низкий