Описание
btrfs: qgroup: fix race between quota disable and quota rescan ioctl
FAQ
Is Azure Linux the only Microsoft product that includes this open-source library and is therefore potentially affected by this vulnerability?
One of the main benefits to our customers who choose to use the Azure Linux distro is the commitment to keep it up to date with the most recent and most secure versions of the open source libraries with which the distro is composed. Microsoft is committed to transparency in this work which is why we began publishing CSAF/VEX in October 2025. See this blog post for more information. If impact to additional products is identified, we will update the CVE to reflect this.
EPSS
5.5 Medium
CVSS3
Связанные уязвимости
In the Linux kernel, the following vulnerability has been resolved: btrfs: qgroup: fix race between quota disable and quota rescan ioctl There's a race between a task disabling quotas and another running the rescan ioctl that can result in a use-after-free of qgroup records from the fs_info->qgroup_tree rbtree. This happens as follows: 1) Task A enters btrfs_ioctl_quota_rescan() -> btrfs_qgroup_rescan(); 2) Task B enters btrfs_quota_disable() and calls btrfs_qgroup_wait_for_completion(), which does nothing because at that point fs_info->qgroup_rescan_running is false (it wasn't set yet by task A); 3) Task B calls btrfs_free_qgroup_config() which starts freeing qgroups from fs_info->qgroup_tree without taking the lock fs_info->qgroup_lock; 4) Task A enters qgroup_rescan_zero_tracking() which starts iterating the fs_info->qgroup_tree tree while holding fs_info->qgroup_lock, but task B is freeing qgroup records from that tree without holding the lock, resulting in a use-after-free. Fix...
In the Linux kernel, the following vulnerability has been resolved: btrfs: qgroup: fix race between quota disable and quota rescan ioctl There's a race between a task disabling quotas and another running the rescan ioctl that can result in a use-after-free of qgroup records from the fs_info->qgroup_tree rbtree. This happens as follows: 1) Task A enters btrfs_ioctl_quota_rescan() -> btrfs_qgroup_rescan(); 2) Task B enters btrfs_quota_disable() and calls btrfs_qgroup_wait_for_completion(), which does nothing because at that point fs_info->qgroup_rescan_running is false (it wasn't set yet by task A); 3) Task B calls btrfs_free_qgroup_config() which starts freeing qgroups from fs_info->qgroup_tree without taking the lock fs_info->qgroup_lock; 4) Task A enters qgroup_rescan_zero_tracking() which starts iterating the fs_info->qgroup_tree tree while holding fs_info->qgroup_lock, but task B is freeing qgroup records from that tree without holding the lock, resulting in a use-after-free. Fix...
In the Linux kernel, the following vulnerability has been resolved: btrfs: qgroup: fix race between quota disable and quota rescan ioctl There's a race between a task disabling quotas and another running the rescan ioctl that can result in a use-after-free of qgroup records from the fs_info->qgroup_tree rbtree. This happens as follows: 1) Task A enters btrfs_ioctl_quota_rescan() -> btrfs_qgroup_rescan(); 2) Task B enters btrfs_quota_disable() and calls btrfs_qgroup_wait_for_completion(), which does nothing because at that point fs_info->qgroup_rescan_running is false (it wasn't set yet by task A); 3) Task B calls btrfs_free_qgroup_config() which starts freeing qgroups from fs_info->qgroup_tree without taking the lock fs_info->qgroup_lock; 4) Task A enters qgroup_rescan_zero_tracking() which starts iterating the fs_info->qgroup_tree tree while holding fs_info->qgroup_lock, but task B is freeing qgroup records from that tree without holding the lock, resulting
In the Linux kernel, the following vulnerability has been resolved: b ...
In the Linux kernel, the following vulnerability has been resolved: btrfs: qgroup: fix race between quota disable and quota rescan ioctl There's a race between a task disabling quotas and another running the rescan ioctl that can result in a use-after-free of qgroup records from the fs_info->qgroup_tree rbtree. This happens as follows: 1) Task A enters btrfs_ioctl_quota_rescan() -> btrfs_qgroup_rescan(); 2) Task B enters btrfs_quota_disable() and calls btrfs_qgroup_wait_for_completion(), which does nothing because at that point fs_info->qgroup_rescan_running is false (it wasn't set yet by task A); 3) Task B calls btrfs_free_qgroup_config() which starts freeing qgroups from fs_info->qgroup_tree without taking the lock fs_info->qgroup_lock; 4) Task A enters qgroup_rescan_zero_tracking() which starts iterating the fs_info->qgroup_tree tree while holding fs_info->qgroup_lock, but task B is freeing qgroup records from that tree without holding the lock, result...
EPSS
5.5 Medium
CVSS3