Логотип exploitDog
Консоль
Логотип exploitDog

exploitDog

msrc логотип

CVE-2025-39944

Опубликовано: 05 окт. 2025
Источник: msrc
CVSS3: 7.8
EPSS Низкий

Описание

octeontx2-pf: Fix use-after-free bugs in otx2_sync_tstamp()

FAQ

Is Azure Linux the only Microsoft product that includes this open-source library and is therefore potentially affected by this vulnerability?

One of the main benefits to our customers who choose to use the Azure Linux distro is the commitment to keep it up to date with the most recent and most secure versions of the open source libraries with which the distro is composed. Microsoft is committed to transparency in this work which is why we began publishing CSAF/VEX in October 2025. See this blog post for more information. If impact to additional products is identified, we will update the CVE to reflect this.

EPSS

Процентиль: 5%
0.00023
Низкий

7.8 High

CVSS3

Связанные уязвимости

CVSS3: 7.8
ubuntu
4 месяца назад

In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: Fix use-after-free bugs in otx2_sync_tstamp() The original code relies on cancel_delayed_work() in otx2_ptp_destroy(), which does not ensure that the delayed work item synctstamp_work has fully completed if it was already running. This leads to use-after-free scenarios where otx2_ptp is deallocated by otx2_ptp_destroy(), while synctstamp_work remains active and attempts to dereference otx2_ptp in otx2_sync_tstamp(). Furthermore, the synctstamp_work is cyclic, the likelihood of triggering the bug is nonnegligible. A typical race condition is illustrated below: CPU 0 (cleanup) | CPU 1 (delayed work callback) otx2_remove() | otx2_ptp_destroy() | otx2_sync_tstamp() cancel_delayed_work() | kfree(ptp) | | ptp = container_of(...); //UAF | ptp-> //UAF This is confirmed by a KASAN report: BUG: KASAN: slab-use-after-free in __run_timer_base.part.0+0x7d7/0x8c0 Write of si...

CVSS3: 7.8
nvd
4 месяца назад

In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: Fix use-after-free bugs in otx2_sync_tstamp() The original code relies on cancel_delayed_work() in otx2_ptp_destroy(), which does not ensure that the delayed work item synctstamp_work has fully completed if it was already running. This leads to use-after-free scenarios where otx2_ptp is deallocated by otx2_ptp_destroy(), while synctstamp_work remains active and attempts to dereference otx2_ptp in otx2_sync_tstamp(). Furthermore, the synctstamp_work is cyclic, the likelihood of triggering the bug is nonnegligible. A typical race condition is illustrated below: CPU 0 (cleanup) | CPU 1 (delayed work callback) otx2_remove() | otx2_ptp_destroy() | otx2_sync_tstamp() cancel_delayed_work() | kfree(ptp) | | ptp = container_of(...); //UAF | ptp-> //UAF This is confirmed by a KASAN report: BUG: KASAN: slab-

CVSS3: 7.8
debian
4 месяца назад

In the Linux kernel, the following vulnerability has been resolved: o ...

CVSS3: 7.8
github
4 месяца назад

In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: Fix use-after-free bugs in otx2_sync_tstamp() The original code relies on cancel_delayed_work() in otx2_ptp_destroy(), which does not ensure that the delayed work item synctstamp_work has fully completed if it was already running. This leads to use-after-free scenarios where otx2_ptp is deallocated by otx2_ptp_destroy(), while synctstamp_work remains active and attempts to dereference otx2_ptp in otx2_sync_tstamp(). Furthermore, the synctstamp_work is cyclic, the likelihood of triggering the bug is nonnegligible. A typical race condition is illustrated below: CPU 0 (cleanup) | CPU 1 (delayed work callback) otx2_remove() | otx2_ptp_destroy() | otx2_sync_tstamp() cancel_delayed_work() | kfree(ptp) | | ptp = container_of(...); //UAF | ptp-> //UAF This is confirmed by a KASAN report: BUG: KASAN: sl...

suse-cvrf
около 1 месяца назад

Security update for the Linux Kernel

EPSS

Процентиль: 5%
0.00023
Низкий

7.8 High

CVSS3