Логотип exploitDog
Консоль
Логотип exploitDog

exploitDog

nvd логотип

CVE-2024-31076

Опубликовано: 21 июн. 2024
Источник: nvd
EPSS Низкий

Описание

In the Linux kernel, the following vulnerability has been resolved:

genirq/cpuhotplug, x86/vector: Prevent vector leak during CPU offline

The absence of IRQD_MOVE_PCNTXT prevents immediate effectiveness of interrupt affinity reconfiguration via procfs. Instead, the change is deferred until the next instance of the interrupt being triggered on the original CPU.

When the interrupt next triggers on the original CPU, the new affinity is enforced within __irq_move_irq(). A vector is allocated from the new CPU, but the old vector on the original CPU remains and is not immediately reclaimed. Instead, apicd->move_in_progress is flagged, and the reclaiming process is delayed until the next trigger of the interrupt on the new CPU.

Upon the subsequent triggering of the interrupt on the new CPU, irq_complete_move() adds a task to the old CPU's vector_cleanup list if it remains online. Subsequently, the timer on the old CPU iterates over its vector_cleanup list, reclaiming old vectors.

However

EPSS

Процентиль: 52%
0.00286
Низкий

Дефекты

Связанные уязвимости

ubuntu
12 месяцев назад

In the Linux kernel, the following vulnerability has been resolved: genirq/cpuhotplug, x86/vector: Prevent vector leak during CPU offline The absence of IRQD_MOVE_PCNTXT prevents immediate effectiveness of interrupt affinity reconfiguration via procfs. Instead, the change is deferred until the next instance of the interrupt being triggered on the original CPU. When the interrupt next triggers on the original CPU, the new affinity is enforced within __irq_move_irq(). A vector is allocated from the new CPU, but the old vector on the original CPU remains and is not immediately reclaimed. Instead, apicd->move_in_progress is flagged, and the reclaiming process is delayed until the next trigger of the interrupt on the new CPU. Upon the subsequent triggering of the interrupt on the new CPU, irq_complete_move() adds a task to the old CPU's vector_cleanup list if it remains online. Subsequently, the timer on the old CPU iterates over its vector_cleanup list, reclaiming old vectors. However, ...

CVSS3: 5.1
redhat
12 месяцев назад

In the Linux kernel, the following vulnerability has been resolved: genirq/cpuhotplug, x86/vector: Prevent vector leak during CPU offline The absence of IRQD_MOVE_PCNTXT prevents immediate effectiveness of interrupt affinity reconfiguration via procfs. Instead, the change is deferred until the next instance of the interrupt being triggered on the original CPU. When the interrupt next triggers on the original CPU, the new affinity is enforced within __irq_move_irq(). A vector is allocated from the new CPU, but the old vector on the original CPU remains and is not immediately reclaimed. Instead, apicd->move_in_progress is flagged, and the reclaiming process is delayed until the next trigger of the interrupt on the new CPU. Upon the subsequent triggering of the interrupt on the new CPU, irq_complete_move() adds a task to the old CPU's vector_cleanup list if it remains online. Subsequently, the timer on the old CPU iterates over its vector_cleanup list, reclaiming old vectors. However, ...

debian
12 месяцев назад

In the Linux kernel, the following vulnerability has been resolved: g ...

github
12 месяцев назад

In the Linux kernel, the following vulnerability has been resolved: genirq/cpuhotplug, x86/vector: Prevent vector leak during CPU offline The absence of IRQD_MOVE_PCNTXT prevents immediate effectiveness of interrupt affinity reconfiguration via procfs. Instead, the change is deferred until the next instance of the interrupt being triggered on the original CPU. When the interrupt next triggers on the original CPU, the new affinity is enforced within __irq_move_irq(). A vector is allocated from the new CPU, but the old vector on the original CPU remains and is not immediately reclaimed. Instead, apicd->move_in_progress is flagged, and the reclaiming process is delayed until the next trigger of the interrupt on the new CPU. Upon the subsequent triggering of the interrupt on the new CPU, irq_complete_move() adds a task to the old CPU's vector_cleanup list if it remains online. Subsequently, the timer on the old CPU iterates over its vector_cleanup list, reclaiming old vectors. Howe...

CVSS3: 5.5
fstec
12 месяцев назад

Уязвимость компонентов genirq/cpuhotplug ядра операционной системы Linux, позволяющая нарушителю вызвать отказ в обслуживании

EPSS

Процентиль: 52%
0.00286
Низкий

Дефекты