Описание
In the Linux kernel, the following vulnerability has been resolved:
icmp: change the order of rate limits
ICMP messages are ratelimited :
After the blamed commits, the two rate limiters are applied in this order:
-
host wide ratelimit (icmp_global_allow())
-
Per destination ratelimit (inetpeer based)
In order to avoid side-channels attacks, we need to apply the per destination check first.
This patch makes the following change :
-
icmp_global_allow() checks if the host wide limit is reached. But credits are not yet consumed. This is deferred to 3)
-
The per destination limit is checked/updated. This might add a new node in inetpeer tree.
-
icmp_global_consume() consumes tokens if prior operations succeeded.
This means that host wide ratelimit is still effective in keeping inetpeer tree small even under DDOS.
As a bonus, I removed icmp_global.lock as the fast path can use a lock-free operation.
Ссылки
- Patch
- Patch
- Patch
- Patch
- Patch
Уязвимые конфигурации
Одно из
EPSS
5.5 Medium
CVSS3
Дефекты
Связанные уязвимости
In the Linux kernel, the following vulnerability has been resolved: icmp: change the order of rate limits ICMP messages are ratelimited : After the blamed commits, the two rate limiters are applied in this order: 1) host wide ratelimit (icmp_global_allow()) 2) Per destination ratelimit (inetpeer based) In order to avoid side-channels attacks, we need to apply the per destination check first. This patch makes the following change : 1) icmp_global_allow() checks if the host wide limit is reached. But credits are not yet consumed. This is deferred to 3) 2) The per destination limit is checked/updated. This might add a new node in inetpeer tree. 3) icmp_global_consume() consumes tokens if prior operations succeeded. This means that host wide ratelimit is still effective in keeping inetpeer tree small even under DDOS. As a bonus, I removed icmp_global.lock as the fast path can use a lock-free operation.
In the Linux kernel, the following vulnerability has been resolved: icmp: change the order of rate limits ICMP messages are ratelimited : After the blamed commits, the two rate limiters are applied in this order: 1) host wide ratelimit (icmp_global_allow()) 2) Per destination ratelimit (inetpeer based) In order to avoid side-channels attacks, we need to apply the per destination check first. This patch makes the following change : 1) icmp_global_allow() checks if the host wide limit is reached. But credits are not yet consumed. This is deferred to 3) 2) The per destination limit is checked/updated. This might add a new node in inetpeer tree. 3) icmp_global_consume() consumes tokens if prior operations succeeded. This means that host wide ratelimit is still effective in keeping inetpeer tree small even under DDOS. As a bonus, I removed icmp_global.lock as the fast path can use a lock-free operation.
In the Linux kernel, the following vulnerability has been resolved: i ...
In the Linux kernel, the following vulnerability has been resolved: icmp: change the order of rate limits ICMP messages are ratelimited : After the blamed commits, the two rate limiters are applied in this order: 1) host wide ratelimit (icmp_global_allow()) 2) Per destination ratelimit (inetpeer based) In order to avoid side-channels attacks, we need to apply the per destination check first. This patch makes the following change : 1) icmp_global_allow() checks if the host wide limit is reached. But credits are not yet consumed. This is deferred to 3) 2) The per destination limit is checked/updated. This might add a new node in inetpeer tree. 3) icmp_global_consume() consumes tokens if prior operations succeeded. This means that host wide ratelimit is still effective in keeping inetpeer tree small even under DDOS. As a bonus, I removed icmp_global.lock as the fast path can use a lock-free operation.
EPSS
5.5 Medium
CVSS3