Описание
In the Linux kernel, the following vulnerability has been resolved:
pfifo_tail_enqueue: Drop new packet when sch->limit == 0
Expected behaviour:
In case we reach scheduler's limit, pfifo_tail_enqueue() will drop a
packet in scheduler's queue and decrease scheduler's qlen by one.
Then, pfifo_tail_enqueue() enqueue new packet and increase
scheduler's qlen by one. Finally, pfifo_tail_enqueue() return
NET_XMIT_CN
status code.
Weird behaviour:
In case we set sch->limit == 0
and trigger pfifo_tail_enqueue() on a
scheduler that has no packet, the 'drop a packet' step will do nothing.
This means the scheduler's qlen still has value equal 0.
Then, we continue to enqueue new packet and increase scheduler's qlen by
one. In summary, we can leverage pfifo_tail_enqueue() to increase qlen by
one and return NET_XMIT_CN
status code.
The problem is: Let's say we have two qdiscs: Qdisc_A and Qdisc_B.
- Qdisc_A's type must have '->graft()' function to create parent/child relationship. Let's
Ссылки
EPSS
Дефекты
Связанные уязвимости
In the Linux kernel, the following vulnerability has been resolved: pfifo_tail_enqueue: Drop new packet when sch->limit == 0 Expected behaviour: In case we reach scheduler's limit, pfifo_tail_enqueue() will drop a packet in scheduler's queue and decrease scheduler's qlen by one. Then, pfifo_tail_enqueue() enqueue new packet and increase scheduler's qlen by one. Finally, pfifo_tail_enqueue() return `NET_XMIT_CN` status code. Weird behaviour: In case we set `sch->limit == 0` and trigger pfifo_tail_enqueue() on a scheduler that has no packet, the 'drop a packet' step will do nothing. This means the scheduler's qlen still has value equal 0. Then, we continue to enqueue new packet and increase scheduler's qlen by one. In summary, we can leverage pfifo_tail_enqueue() to increase qlen by one and return `NET_XMIT_CN` status code. The problem is: Let's say we have two qdiscs: Qdisc_A and Qdisc_B. - Qdisc_A's type must have '->graft()' function to create parent/child relationship. Let's s...
In the Linux kernel, the following vulnerability has been resolved: pfifo_tail_enqueue: Drop new packet when sch->limit == 0 Expected behaviour: In case we reach scheduler's limit, pfifo_tail_enqueue() will drop a packet in scheduler's queue and decrease scheduler's qlen by one. Then, pfifo_tail_enqueue() enqueue new packet and increase scheduler's qlen by one. Finally, pfifo_tail_enqueue() return `NET_XMIT_CN` status code. Weird behaviour: In case we set `sch->limit == 0` and trigger pfifo_tail_enqueue() on a scheduler that has no packet, the 'drop a packet' step will do nothing. This means the scheduler's qlen still has value equal 0. Then, we continue to enqueue new packet and increase scheduler's qlen by one. In summary, we can leverage pfifo_tail_enqueue() to increase qlen by one and return `NET_XMIT_CN` status code. The problem is: Let's say we have two qdiscs: Qdisc_A and Qdisc_B. - Qdisc_A's type must have '->graft()' function to create parent/child relationship. Let's say Q...
In the Linux kernel, the following vulnerability has been resolved: p ...
In the Linux kernel, the following vulnerability has been resolved: pfifo_tail_enqueue: Drop new packet when sch->limit == 0 Expected behaviour: In case we reach scheduler's limit, pfifo_tail_enqueue() will drop a packet in scheduler's queue and decrease scheduler's qlen by one. Then, pfifo_tail_enqueue() enqueue new packet and increase scheduler's qlen by one. Finally, pfifo_tail_enqueue() return `NET_XMIT_CN` status code. Weird behaviour: In case we set `sch->limit == 0` and trigger pfifo_tail_enqueue() on a scheduler that has no packet, the 'drop a packet' step will do nothing. This means the scheduler's qlen still has value equal 0. Then, we continue to enqueue new packet and increase scheduler's qlen by one. In summary, we can leverage pfifo_tail_enqueue() to increase qlen by one and return `NET_XMIT_CN` status code. The problem is: Let's say we have two qdiscs: Qdisc_A and Qdisc_B. - Qdisc_A's type must have '->graft()' function to create parent/child relationship. Let...
Уязвимость функции pfifo_tail_enqueue() (net/sched/sch_fifo.c) ядра операционной системы Linux, позволяющая нарушителю оказать воздействие на конфиденциальность, целостность и доступность защищаемой информации.
EPSS