Описание
In the Linux kernel, the following vulnerability has been resolved:
mm: zswap: fix crypto_free_acomp() deadlock in zswap_cpu_comp_dead()
Currently, zswap_cpu_comp_dead() calls crypto_free_acomp() while holding the per-CPU acomp_ctx mutex. crypto_free_acomp() then holds scomp_lock (through crypto_exit_scomp_ops_async()).
On the other hand, crypto_alloc_acomp_node() holds the scomp_lock (through crypto_scomp_init_tfm()), and then allocates memory. If the allocation results in reclaim, we may attempt to hold the per-CPU acomp_ctx mutex.
The above dependencies can cause an ABBA deadlock. For example in the following scenario:
(1) Task A running on CPU #1: crypto_alloc_acomp_node() Holds scomp_lock Enters reclaim Reads per_cpu_ptr(pool->acomp_ctx, 1)
(2) Task A is descheduled
(3) CPU #1 goes offline zswap_cpu_comp_dead(CPU #1) Holds per_cpu_ptr(pool->acomp_ctx, 1)) Calls crypto_free_acomp() Waits for scomp_lock
(4) Task A running on CPU
EPSS
Дефекты
Связанные уязвимости
In the Linux kernel, the following vulnerability has been resolved: mm: zswap: fix crypto_free_acomp() deadlock in zswap_cpu_comp_dead() Currently, zswap_cpu_comp_dead() calls crypto_free_acomp() while holding the per-CPU acomp_ctx mutex. crypto_free_acomp() then holds scomp_lock (through crypto_exit_scomp_ops_async()). On the other hand, crypto_alloc_acomp_node() holds the scomp_lock (through crypto_scomp_init_tfm()), and then allocates memory. If the allocation results in reclaim, we may attempt to hold the per-CPU acomp_ctx mutex. The above dependencies can cause an ABBA deadlock. For example in the following scenario: (1) Task A running on CPU #1: crypto_alloc_acomp_node() Holds scomp_lock Enters reclaim Reads per_cpu_ptr(pool->acomp_ctx, 1) (2) Task A is descheduled (3) CPU #1 goes offline zswap_cpu_comp_dead(CPU #1) Holds per_cpu_ptr(pool->acomp_ctx, 1)) Calls crypto_free_acomp() Waits for scomp_lock (4) Task A running on CPU #2: Waits for per_cpu_ptr(pool->acomp_ct...
In the Linux kernel, the following vulnerability has been resolved: mm: zswap: fix crypto_free_acomp() deadlock in zswap_cpu_comp_dead() Currently, zswap_cpu_comp_dead() calls crypto_free_acomp() while holding the per-CPU acomp_ctx mutex. crypto_free_acomp() then holds scomp_lock (through crypto_exit_scomp_ops_async()). On the other hand, crypto_alloc_acomp_node() holds the scomp_lock (through crypto_scomp_init_tfm()), and then allocates memory. If the allocation results in reclaim, we may attempt to hold the per-CPU acomp_ctx mutex. The above dependencies can cause an ABBA deadlock. For example in the following scenario: (1) Task A running on CPU #1: crypto_alloc_acomp_node() Holds scomp_lock Enters reclaim Reads per_cpu_ptr(pool->acomp_ctx, 1) (2) Task A is descheduled (3) CPU #1 goes offline zswap_cpu_comp_dead(CPU #1) Holds per_cpu_ptr(pool->acomp_ctx, 1)) Calls crypto_free_acomp() Waits for scomp_lock (4) Task A running on CPU #2: Waits for per_cpu_ptr(pool->acomp_ctx, 1) //...
In the Linux kernel, the following vulnerability has been resolved: m ...
In the Linux kernel, the following vulnerability has been resolved: mm: zswap: fix crypto_free_acomp() deadlock in zswap_cpu_comp_dead() Currently, zswap_cpu_comp_dead() calls crypto_free_acomp() while holding the per-CPU acomp_ctx mutex. crypto_free_acomp() then holds scomp_lock (through crypto_exit_scomp_ops_async()). On the other hand, crypto_alloc_acomp_node() holds the scomp_lock (through crypto_scomp_init_tfm()), and then allocates memory. If the allocation results in reclaim, we may attempt to hold the per-CPU acomp_ctx mutex. The above dependencies can cause an ABBA deadlock. For example in the following scenario: (1) Task A running on CPU #1: crypto_alloc_acomp_node() Holds scomp_lock Enters reclaim Reads per_cpu_ptr(pool->acomp_ctx, 1) (2) Task A is descheduled (3) CPU #1 goes offline zswap_cpu_comp_dead(CPU #1) Holds per_cpu_ptr(pool->acomp_ctx, 1)) Calls crypto_free_acomp() Waits for scomp_lock (4) Task A running on ...
EPSS