Описание
In the Linux kernel, the following vulnerability has been resolved:
fs/jfs: Prevent integer overflow in AG size calculation
The JFS filesystem calculates allocation group (AG) size using 1 << l2agsize in dbExtendFS(). When l2agsize exceeds 31 (possible with >2TB aggregates on 32-bit systems), this 32-bit shift operation causes undefined behavior and improper AG sizing.
On 32-bit architectures:
- Left-shifting 1 by 32+ bits results in 0 due to integer overflow
- This creates invalid AG sizes (0 or garbage values) in sbi->bmap->db_agsize
- Subsequent block allocations would reference invalid AG structures
- Could lead to:
- Filesystem corruption during extend operations
- Kernel crashes due to invalid memory accesses
- Security vulnerabilities via malformed on-disk structures
Fix by casting to s64 before shifting: bmp->db_agsize = (s64)1 << l2agsize;
This ensures 64-bit arithmetic even on 32-bit architectures. The cast matches the data type of db_agsize (s64) and follows simil
Ссылки
EPSS
Дефекты
Связанные уязвимости
In the Linux kernel, the following vulnerability has been resolved: fs/jfs: Prevent integer overflow in AG size calculation The JFS filesystem calculates allocation group (AG) size using 1 << l2agsize in dbExtendFS(). When l2agsize exceeds 31 (possible with >2TB aggregates on 32-bit systems), this 32-bit shift operation causes undefined behavior and improper AG sizing. On 32-bit architectures: - Left-shifting 1 by 32+ bits results in 0 due to integer overflow - This creates invalid AG sizes (0 or garbage values) in sbi->bmap->db_agsize - Subsequent block allocations would reference invalid AG structures - Could lead to: - Filesystem corruption during extend operations - Kernel crashes due to invalid memory accesses - Security vulnerabilities via malformed on-disk structures Fix by casting to s64 before shifting: bmp->db_agsize = (s64)1 << l2agsize; This ensures 64-bit arithmetic even on 32-bit architectures. The cast matches the data type of db_agsize (s64) and follows similar ...
In the Linux kernel, the following vulnerability has been resolved: fs/jfs: Prevent integer overflow in AG size calculation The JFS filesystem calculates allocation group (AG) size using 1 << l2agsize in dbExtendFS(). When l2agsize exceeds 31 (possible with >2TB aggregates on 32-bit systems), this 32-bit shift operation causes undefined behavior and improper AG sizing. On 32-bit architectures: - Left-shifting 1 by 32+ bits results in 0 due to integer overflow - This creates invalid AG sizes (0 or garbage values) in sbi->bmap->db_agsize - Subsequent block allocations would reference invalid AG structures - Could lead to: - Filesystem corruption during extend operations - Kernel crashes due to invalid memory accesses - Security vulnerabilities via malformed on-disk structures Fix by casting to s64 before shifting: bmp->db_agsize = (s64)1 << l2agsize; This ensures 64-bit arithmetic even on 32-bit architectures. The cast matches the data type of db_agsize (s64) and follows similar patte...
In the Linux kernel, the following vulnerability has been resolved: f ...
In the Linux kernel, the following vulnerability has been resolved: fs/jfs: Prevent integer overflow in AG size calculation The JFS filesystem calculates allocation group (AG) size using 1 << l2agsize in dbExtendFS(). When l2agsize exceeds 31 (possible with >2TB aggregates on 32-bit systems), this 32-bit shift operation causes undefined behavior and improper AG sizing. On 32-bit architectures: - Left-shifting 1 by 32+ bits results in 0 due to integer overflow - This creates invalid AG sizes (0 or garbage values) in sbi->bmap->db_agsize - Subsequent block allocations would reference invalid AG structures - Could lead to: - Filesystem corruption during extend operations - Kernel crashes due to invalid memory accesses - Security vulnerabilities via malformed on-disk structures Fix by casting to s64 before shifting: bmp->db_agsize = (s64)1 << l2agsize; This ensures 64-bit arithmetic even on 32-bit architectures. The cast matches the data type of db_agsize (s64) and follows si...
EPSS