Описание
vLLM is an inference and serving engine for large language models (LLMs). From versions 0.10.2 to before 0.11.1, a memory corruption vulnerability could lead to a crash (denial-of-service) and potentially remote code execution (RCE), exists in the Completions API endpoint. When processing user-supplied prompt embeddings, the endpoint loads serialized tensors using torch.load() without sufficient validation. Due to a change introduced in PyTorch 2.8.0, sparse tensor integrity checks are disabled by default. As a result, maliciously crafted tensors can bypass internal bounds checks and trigger an out-of-bounds memory write during the call to to_dense(). This memory corruption can crash vLLM and potentially lead to code execution on the server hosting vLLM. This issue has been patched in version 0.11.1.
Ссылки
- Patch
- Issue TrackingPatchVendor Advisory
- Issue TrackingVendor Advisory
Уязвимые конфигурации
Одно из
EPSS
8.8 High
CVSS3
Дефекты
Связанные уязвимости
vLLM is an inference and serving engine for large language models (LLM ...
vLLM deserialization vulnerability leading to DoS and potential RCE
Уязвимость компонента Completions API библиотеки для работы с большими языковыми моделями (LLM) vLLM, позволяющая нарушителю вызвать отказ в обслуживании и выполнить произвольный код
EPSS
8.8 High
CVSS3