Описание
The SPDY protocol 3 and earlier, as used in Mozilla Firefox, Google Chrome, and other products, can perform TLS encryption of compressed data without properly obfuscating the length of the unencrypted data, which allows man-in-the-middle attackers to obtain plaintext HTTP headers by observing length differences during a series of guesses in which a string in an HTTP request potentially matches an unknown string in an HTTP header, aka a "CRIME" attack.
Отчет
Not vulnerable. This issue did not affect the versions of Firefox as shipped with Red Hat Enterprise Linux 5 and 6 as they did not include SPDY protocol support.
Затронутые пакеты
| Платформа | Пакет | Состояние | Рекомендация | Релиз |
|---|---|---|---|---|
| Red Hat Enterprise Linux 5 | firefox | Not affected | ||
| Red Hat Enterprise Linux 6 | firefox | Not affected |
Показывать по
Дополнительная информация
4.3 Medium
CVSS2
Связанные уязвимости
The SPDY protocol 3 and earlier, as used in Mozilla Firefox, Google Chrome, and other products, can perform TLS encryption of compressed data without properly obfuscating the length of the unencrypted data, which allows man-in-the-middle attackers to obtain plaintext HTTP headers by observing length differences during a series of guesses in which a string in an HTTP request potentially matches an unknown string in an HTTP header, aka a "CRIME" attack.
The SPDY protocol 3 and earlier, as used in Mozilla Firefox, Google Chrome, and other products, can perform TLS encryption of compressed data without properly obfuscating the length of the unencrypted data, which allows man-in-the-middle attackers to obtain plaintext HTTP headers by observing length differences during a series of guesses in which a string in an HTTP request potentially matches an unknown string in an HTTP header, aka a "CRIME" attack.
The SPDY protocol 3 and earlier, as used in Mozilla Firefox, Google Ch ...
The SPDY protocol 3 and earlier, as used in Mozilla Firefox, Google Chrome, and other products, can perform TLS encryption of compressed data without properly obfuscating the length of the unencrypted data, which allows man-in-the-middle attackers to obtain plaintext HTTP headers by observing length differences during a series of guesses in which a string in an HTTP request potentially matches an unknown string in an HTTP header, aka a "CRIME" attack.
4.3 Medium
CVSS2