Описание
The 802.11 standard that underpins Wi-Fi Protected Access (WPA, WPA2, and WPA3) and Wired Equivalent Privacy (WEP) doesn't require that received fragments be cleared from memory after (re)connecting to a network. Under the right circumstances, when another device sends fragmented frames encrypted using WEP, CCMP, or GCMP, this can be abused to inject arbitrary network packets and/or exfiltrate user data.
A flaw was found in the Linux kernels implementation of wifi fragmentation handling. An attacker with the ability to transmit within the wireless transmission range of an access point can abuse a flaw where previous contents of wifi fragments can be unintentionally transmitted to another device.
Меры по смягчению последствий
Mitigation for this issue is either not available or the currently available options does not meet the Red Hat Product Security criteria comprising ease of use and deployment, applicability to widespread installation base or stability.
Затронутые пакеты
Платформа | Пакет | Состояние | Рекомендация | Релиз |
---|---|---|---|---|
Red Hat Enterprise Linux 5 | kernel | Out of support scope | ||
Red Hat Enterprise Linux 6 | kernel | Out of support scope | ||
Red Hat Enterprise Linux 7 | kernel | Out of support scope | ||
Red Hat Enterprise Linux 7 | kernel-alt | Out of support scope | ||
Red Hat Enterprise Linux 7 | kernel-rt | Out of support scope | ||
Red Hat Enterprise Linux 9 | kernel | Not affected | ||
Red Hat Enterprise Linux 8 | kernel-rt | Fixed | RHSA-2021:4140 | 09.11.2021 |
Red Hat Enterprise Linux 8 | kernel | Fixed | RHSA-2021:4356 | 09.11.2021 |
Показывать по
Дополнительная информация
Статус:
EPSS
4.3 Medium
CVSS3
Связанные уязвимости
The 802.11 standard that underpins Wi-Fi Protected Access (WPA, WPA2, and WPA3) and Wired Equivalent Privacy (WEP) doesn't require that received fragments be cleared from memory after (re)connecting to a network. Under the right circumstances, when another device sends fragmented frames encrypted using WEP, CCMP, or GCMP, this can be abused to inject arbitrary network packets and/or exfiltrate user data.
The 802.11 standard that underpins Wi-Fi Protected Access (WPA, WPA2, and WPA3) and Wired Equivalent Privacy (WEP) doesn't require that received fragments be cleared from memory after (re)connecting to a network. Under the right circumstances, when another device sends fragmented frames encrypted using WEP, CCMP, or GCMP, this can be abused to inject arbitrary network packets and/or exfiltrate user data.
The 802.11 standard that underpins Wi-Fi Protected Access (WPA, WPA2, ...
The 802.11 standard that underpins Wi-Fi Protected Access (WPA, WPA2, and WPA3) and Wired Equivalent Privacy (WEP) doesn't require that received fragments be cleared from memory after (re)connecting to a network. Under the right circumstances, when another device sends fragmented frames encrypted using WEP, CCMP, or GCMP, this can be abused to inject arbitrary network packets and/or exfiltrate user data.
Уязвимость реализации алгоритмов WEP, WPA, WPA2 и WPA3 набора стандартов связи для коммуникации IEEE 802.11, позволяющая нарушителю внедрить произвольные сетевые пакеты и/или оказать воздействие на целостность защищаемой информации
EPSS
4.3 Medium
CVSS3