Логотип exploitDog
Консоль
Логотип exploitDog

exploitDog

redhat логотип

CVE-2021-47226

Опубликовано: 21 мая 2024
Источник: redhat
CVSS3: 5.5
EPSS Низкий

Описание

In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Invalidate FPU state after a failed XRSTOR from a user buffer Both Intel and AMD consider it to be architecturally valid for XRSTOR to fail with #PF but nonetheless change the register state. The actual conditions under which this might occur are unclear [1], but it seems plausible that this might be triggered if one sibling thread unmaps a page and invalidates the shared TLB while another sibling thread is executing XRSTOR on the page in question. __fpu__restore_sig() can execute XRSTOR while the hardware registers are preserved on behalf of a different victim task (using the fpu_fpregs_owner_ctx mechanism), and, in theory, XRSTOR could fail but modify the registers. If this happens, then there is a window in which __fpu__restore_sig() could schedule out and the victim task could schedule back in without reloading its own FPU registers. This would result in part of the FPU state that __fpu__restore_sig() was attempting to load leaking into the victim task's user-visible state. Invalidate preserved FPU registers on XRSTOR failure to prevent this situation from corrupting any state. [1] Frequent readers of the errata lists might imagine "complex microarchitectural conditions".

Затронутые пакеты

ПлатформаПакетСостояниеРекомендацияРелиз
Red Hat Enterprise Linux 6kernelNot affected
Red Hat Enterprise Linux 7kernelNot affected
Red Hat Enterprise Linux 7kernel-rtNot affected
Red Hat Enterprise Linux 8kernelAffected
Red Hat Enterprise Linux 8kernel-rtAffected
Red Hat Enterprise Linux 9kernelFix deferred
Red Hat Enterprise Linux 9kernel-rtFix deferred

Показывать по

Дополнительная информация

Статус:

Low
Дефект:
CWE-402
https://bugzilla.redhat.com/show_bug.cgi?id=2282591kernel: x86/fpu: Invalidate FPU state after a failed XRSTOR from a user buffer

EPSS

Процентиль: 16%
0.00053
Низкий

5.5 Medium

CVSS3

Связанные уязвимости

CVSS3: 7.1
ubuntu
больше 1 года назад

In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Invalidate FPU state after a failed XRSTOR from a user buffer Both Intel and AMD consider it to be architecturally valid for XRSTOR to fail with #PF but nonetheless change the register state. The actual conditions under which this might occur are unclear [1], but it seems plausible that this might be triggered if one sibling thread unmaps a page and invalidates the shared TLB while another sibling thread is executing XRSTOR on the page in question. __fpu__restore_sig() can execute XRSTOR while the hardware registers are preserved on behalf of a different victim task (using the fpu_fpregs_owner_ctx mechanism), and, in theory, XRSTOR could fail but modify the registers. If this happens, then there is a window in which __fpu__restore_sig() could schedule out and the victim task could schedule back in without reloading its own FPU registers. This would result in part of the FPU state that __fpu__restore_sig() ...

CVSS3: 7.1
nvd
больше 1 года назад

In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Invalidate FPU state after a failed XRSTOR from a user buffer Both Intel and AMD consider it to be architecturally valid for XRSTOR to fail with #PF but nonetheless change the register state. The actual conditions under which this might occur are unclear [1], but it seems plausible that this might be triggered if one sibling thread unmaps a page and invalidates the shared TLB while another sibling thread is executing XRSTOR on the page in question. __fpu__restore_sig() can execute XRSTOR while the hardware registers are preserved on behalf of a different victim task (using the fpu_fpregs_owner_ctx mechanism), and, in theory, XRSTOR could fail but modify the registers. If this happens, then there is a window in which __fpu__restore_sig() could schedule out and the victim task could schedule back in without reloading its own FPU registers. This would result in part of the FPU state that __fpu__restore_sig()

CVSS3: 7.1
debian
больше 1 года назад

In the Linux kernel, the following vulnerability has been resolved: x ...

CVSS3: 7.1
github
больше 1 года назад

In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Invalidate FPU state after a failed XRSTOR from a user buffer Both Intel and AMD consider it to be architecturally valid for XRSTOR to fail with #PF but nonetheless change the register state. The actual conditions under which this might occur are unclear [1], but it seems plausible that this might be triggered if one sibling thread unmaps a page and invalidates the shared TLB while another sibling thread is executing XRSTOR on the page in question. __fpu__restore_sig() can execute XRSTOR while the hardware registers are preserved on behalf of a different victim task (using the fpu_fpregs_owner_ctx mechanism), and, in theory, XRSTOR could fail but modify the registers. If this happens, then there is a window in which __fpu__restore_sig() could schedule out and the victim task could schedule back in without reloading its own FPU registers. This would result in part of the FPU state that __fpu__restore_si...

CVSS3: 5.5
fstec
больше 4 лет назад

Уязвимость функции __fpu__restore_sig() модуля arch/x86/kernel/fpu/signal.c на платформе x86 ядра операционной системы Linux, позволяющая нарушителю вызвать отказ в обслуживании.

EPSS

Процентиль: 16%
0.00053
Низкий

5.5 Medium

CVSS3