Описание
The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and
decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload data.
If the function succeeds then the "name_out", "header" and "data" arguments are
populated with pointers to buffers containing the relevant decoded data. The
caller is responsible for freeing those buffers. It is possible to construct a
PEM file that results in 0 bytes of payload data. In this case PEM_read_bio_ex()
will return a failure code but will populate the header argument with a pointer
to a buffer that has already been freed. If the caller also frees this buffer
then a double free will occur. This will most likely lead to a crash. This
could be exploited by an attacker who has the ability to supply malicious PEM
files for parsing to achieve a denial of service attack.
The functions PEM_read_bio() and PEM_read() are simple wrappers around
PEM_read_bio_ex() and therefore these functions are also directly affected.
These functions are also called indirectly by a number of other OpenSSL
functions including PEM_X509_INFO_read_bio_ex() and
SSL_CTX_use_serverinfo_file() which are also vulnerable. Some OpenSSL internal
uses of these functions are not vulnerable because the caller does not free the
header argument if PEM_read_bio_ex() returns a failure code. These locations
include the PEM_read_bio_TYPE() functions as well as the decoders introduced in
OpenSSL 3.0.
The OpenSSL asn1parse command line application is also impacted by this issue.
A double-free vulnerability was found in OpenSSL's PEM_read_bio_ex function. The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and decodes the "name" (for example, "CERTIFICATE"), any header data, and the payload data. If the function succeeds, then the "name_out," "header," and "data" arguments are populated with pointers to buffers containing the relevant decoded data. The caller is responsible for freeing those buffers. Constructing a PEM file that results in 0 bytes of payload data is possible. In this case, PEM_read_bio_ex() will return a failure code but will populate the header argument with a pointer to a freed buffer. A double-free will occur if the caller also frees this buffer. This will most likely lead to a crash. This could be exploited by an attacker who can supply malicious PEM files for parsing to achieve a denial of service attack.
Отчет
This flaw is rated as having a Moderate impact as it is less easily exploited and is only vulnerable in unlikely configurations. Additionally, the upstream advisory (linked in External References) also rates it as Moderate.
The versions of shim
as shipped with Red Hat Enterprise Linux 8 and 9 are shipping OpenSSL 1.1.1 and 1.0.2, which do not contain the incorrect code, so those are not affected by this CVE.
Затронутые пакеты
Платформа | Пакет | Состояние | Рекомендация | Релиз |
---|---|---|---|---|
Red Hat Enterprise Linux 6 | openssl | Not affected | ||
Red Hat Enterprise Linux 7 | openssl | Not affected | ||
Red Hat Enterprise Linux 7 | ovmf | Not affected | ||
Red Hat Enterprise Linux 8 | compat-openssl10 | Not affected | ||
Red Hat Enterprise Linux 8 | shim | Not affected | ||
Red Hat Enterprise Linux 9 | compat-openssl11 | Will not fix | ||
Red Hat Enterprise Linux 9 | shim | Not affected | ||
Red Hat JBoss Web Server 3 | openssl | Out of support scope | ||
JBCS httpd 2.4.51.sp2 | openssl | Fixed | RHSA-2023:3355 | 05.06.2023 |
JBoss Core Services for RHEL 8 | jbcs-httpd24-openssl | Fixed | RHSA-2023:3354 | 05.06.2023 |
Показывать по
Дополнительная информация
Статус:
7.5 High
CVSS3
Связанные уязвимости
The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload data. If the function succeeds then the "name_out", "header" and "data" arguments are populated with pointers to buffers containing the relevant decoded data. The caller is responsible for freeing those buffers. It is possible to construct a PEM file that results in 0 bytes of payload data. In this case PEM_read_bio_ex() will return a failure code but will populate the header argument with a pointer to a buffer that has already been freed. If the caller also frees this buffer then a double free will occur. This will most likely lead to a crash. This could be exploited by an attacker who has the ability to supply malicious PEM files for parsing to achieve a denial of service attack. The functions PEM_read_bio() and PEM_read() are simple wrappers around PEM_read_bio_ex() and therefore these functions are also directly affected. These functi...
The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload data. If the function succeeds then the "name_out", "header" and "data" arguments are populated with pointers to buffers containing the relevant decoded data. The caller is responsible for freeing those buffers. It is possible to construct a PEM file that results in 0 bytes of payload data. In this case PEM_read_bio_ex() will return a failure code but will populate the header argument with a pointer to a buffer that has already been freed. If the caller also frees this buffer then a double free will occur. This will most likely lead to a crash. This could be exploited by an attacker who has the ability to supply malicious PEM files for parsing to achieve a denial of service attack. The functions PEM_read_bio() and PEM_read() are simple wrappers around PEM_read_bio_ex() and therefore these functions are also directly affected. These functio
The function PEM_read_bio_ex() reads a PEM file from a BIO and parses ...
openssl-src contains Double free after calling `PEM_read_bio_ex`
7.5 High
CVSS3