Описание
In the Linux kernel, the following vulnerability has been resolved: can: gs_usb: gs_usb_open/close(): fix memory leak The gs_usb driver appears to suffer from a malady common to many USB CAN adapter drivers in that it performs usb_alloc_coherent() to allocate a number of USB request blocks (URBs) for RX, and then later relies on usb_kill_anchored_urbs() to free them, but this doesn't actually free them. As a result, this may be leaking DMA memory that's been used by the driver. This commit is an adaptation of the techniques found in the esd_usb2 driver where a similar design pattern led to a memory leak. It explicitly frees the RX URBs and their DMA memory via a call to usb_free_coherent(). Since the RX URBs were allocated in the gs_can_open(), we remove them in gs_can_close() rather than in the disconnect function as was done in esd_usb2. For more information, see the 928150fad41b ("can: esd_usb2: fix memory leak").
Затронутые пакеты
| Платформа | Пакет | Состояние | Рекомендация | Релиз |
|---|---|---|---|---|
| Red Hat Enterprise Linux 10 | kernel | Not affected | ||
| Red Hat Enterprise Linux 6 | kernel | Not affected | ||
| Red Hat Enterprise Linux 7 | kernel | Not affected | ||
| Red Hat Enterprise Linux 7 | kernel-rt | Not affected | ||
| Red Hat Enterprise Linux 8 | kernel | Not affected | ||
| Red Hat Enterprise Linux 8 | kernel-rt | Not affected | ||
| Red Hat Enterprise Linux 9 | kernel | Not affected | ||
| Red Hat Enterprise Linux 9 | kernel-rt | Not affected |
Показывать по
Дополнительная информация
Статус:
EPSS
5.5 Medium
CVSS3
Связанные уязвимости
In the Linux kernel, the following vulnerability has been resolved: can: gs_usb: gs_usb_open/close(): fix memory leak The gs_usb driver appears to suffer from a malady common to many USB CAN adapter drivers in that it performs usb_alloc_coherent() to allocate a number of USB request blocks (URBs) for RX, and then later relies on usb_kill_anchored_urbs() to free them, but this doesn't actually free them. As a result, this may be leaking DMA memory that's been used by the driver. This commit is an adaptation of the techniques found in the esd_usb2 driver where a similar design pattern led to a memory leak. It explicitly frees the RX URBs and their DMA memory via a call to usb_free_coherent(). Since the RX URBs were allocated in the gs_can_open(), we remove them in gs_can_close() rather than in the disconnect function as was done in esd_usb2. For more information, see the 928150fad41b ("can: esd_usb2: fix memory leak").
In the Linux kernel, the following vulnerability has been resolved: can: gs_usb: gs_usb_open/close(): fix memory leak The gs_usb driver appears to suffer from a malady common to many USB CAN adapter drivers in that it performs usb_alloc_coherent() to allocate a number of USB request blocks (URBs) for RX, and then later relies on usb_kill_anchored_urbs() to free them, but this doesn't actually free them. As a result, this may be leaking DMA memory that's been used by the driver. This commit is an adaptation of the techniques found in the esd_usb2 driver where a similar design pattern led to a memory leak. It explicitly frees the RX URBs and their DMA memory via a call to usb_free_coherent(). Since the RX URBs were allocated in the gs_can_open(), we remove them in gs_can_close() rather than in the disconnect function as was done in esd_usb2. For more information, see the 928150fad41b ("can: esd_usb2: fix memory leak").
In the Linux kernel, the following vulnerability has been resolved: c ...
In the Linux kernel, the following vulnerability has been resolved: can: gs_usb: gs_usb_open/close(): fix memory leak The gs_usb driver appears to suffer from a malady common to many USB CAN adapter drivers in that it performs usb_alloc_coherent() to allocate a number of USB request blocks (URBs) for RX, and then later relies on usb_kill_anchored_urbs() to free them, but this doesn't actually free them. As a result, this may be leaking DMA memory that's been used by the driver. This commit is an adaptation of the techniques found in the esd_usb2 driver where a similar design pattern led to a memory leak. It explicitly frees the RX URBs and their DMA memory via a call to usb_free_coherent(). Since the RX URBs were allocated in the gs_can_open(), we remove them in gs_can_close() rather than in the disconnect function as was done in esd_usb2. For more information, see the 928150fad41b ("can: esd_usb2: fix memory leak").
EPSS
5.5 Medium
CVSS3