Логотип exploitDog
Консоль
Логотип exploitDog

exploitDog

redhat логотип

CVE-2024-27005

Опубликовано: 01 мая 2024
Источник: redhat
CVSS3: 5.5
EPSS Низкий

Описание

In the Linux kernel, the following vulnerability has been resolved: interconnect: Don't access req_list while it's being manipulated The icc_lock mutex was split into separate icc_lock and icc_bw_lock mutexes in [1] to avoid lockdep splats. However, this didn't adequately protect access to icc_node::req_list. The icc_set_bw() function will eventually iterate over req_list while only holding icc_bw_lock, but req_list can be modified while only holding icc_lock. This causes races between icc_set_bw(), of_icc_get(), and icc_put(). Example A: CPU0 CPU1


icc_set_bw(path_a) mutex_lock(&icc_bw_lock); icc_put(path_b) mutex_lock(&icc_lock); aggregate_requests() hlist_for_each_entry(r, ... hlist_del(... <r = invalid pointer> Example B: CPU0 CPU1


icc_set_bw(path_a) mutex_lock(&icc_bw_lock); path_b = of_icc_get() of_icc_get_by_index() mutex_lock(&icc_lock); path_find() path_init() aggregate_requests() hlist_for_each_entry(r, ... hlist_add_head(... <r = invalid pointer> Fix this by ensuring icc_bw_lock is always held before manipulating icc_node::req_list. The additional places icc_bw_lock is held don't perform any memory allocations, so we should still be safe from the original lockdep splats that motivated the separate locks. [1] commit af42269c3523 ("interconnect: Fix locking for runpm vs reclaim")

A flaw was found in the interconnect subsystem in the Linux kernel, where access to req_list is not properly synchronized while it is being manipulated. This issue could lead to race conditions, causing system instability or other security concerns.

Отчет

Red Hat Enterprise Linux is not vulnerable to this CVE, as it does not affect the versions or configurations of the Linux kernel used in its distributions.

Меры по смягчению последствий

Mitigation for this issue is either not available or the currently available options do not meet the Red Hat Product Security criteria comprising ease of use and deployment, applicability to widespread installation base or stability.

Затронутые пакеты

ПлатформаПакетСостояниеРекомендацияРелиз
Red Hat Enterprise Linux 6kernelNot affected
Red Hat Enterprise Linux 7kernelNot affected
Red Hat Enterprise Linux 7kernel-rtNot affected
Red Hat Enterprise Linux 8kernelNot affected
Red Hat Enterprise Linux 8kernel-rtNot affected
Red Hat Enterprise Linux 9kernelNot affected
Red Hat Enterprise Linux 9kernel-rtNot affected

Показывать по

Дополнительная информация

Статус:

Moderate
https://bugzilla.redhat.com/show_bug.cgi?id=2278289kernel: interconnect: Don&#39;t access req_list while it&#39;s being manipulated

EPSS

Процентиль: 0%
0.00005
Низкий

5.5 Medium

CVSS3

Связанные уязвимости

CVSS3: 6.3
ubuntu
почти 2 года назад

In the Linux kernel, the following vulnerability has been resolved: interconnect: Don't access req_list while it's being manipulated The icc_lock mutex was split into separate icc_lock and icc_bw_lock mutexes in [1] to avoid lockdep splats. However, this didn't adequately protect access to icc_node::req_list. The icc_set_bw() function will eventually iterate over req_list while only holding icc_bw_lock, but req_list can be modified while only holding icc_lock. This causes races between icc_set_bw(), of_icc_get(), and icc_put(). Example A: CPU0 CPU1 ---- ---- icc_set_bw(path_a) mutex_lock(&icc_bw_lock); icc_put(path_b) mutex_lock(&icc_lock); aggregate_requests() hlist_for_each_entry(r, ... hlist_del(... <r = invalid pointer> Example B: CPU0 CPU1 ---- ---- icc_set_bw(path_a) mutex_lock(&icc_bw_lock); path_b = of_icc_get() of_icc_get_by_index() mutex_lock(&icc_lock); ...

CVSS3: 6.3
nvd
почти 2 года назад

In the Linux kernel, the following vulnerability has been resolved: interconnect: Don't access req_list while it's being manipulated The icc_lock mutex was split into separate icc_lock and icc_bw_lock mutexes in [1] to avoid lockdep splats. However, this didn't adequately protect access to icc_node::req_list. The icc_set_bw() function will eventually iterate over req_list while only holding icc_bw_lock, but req_list can be modified while only holding icc_lock. This causes races between icc_set_bw(), of_icc_get(), and icc_put(). Example A: CPU0 CPU1 ---- ---- icc_set_bw(path_a) mutex_lock(&icc_bw_lock); icc_put(path_b) mutex_lock(&icc_lock); aggregate_requests() hlist_for_each_entry(r, ... hlist_del(... <r = invalid pointer> Example B: CPU0 CPU1 -

CVSS3: 6.3
msrc
больше 1 года назад

Описание отсутствует

CVSS3: 6.3
debian
почти 2 года назад

In the Linux kernel, the following vulnerability has been resolved: i ...

CVSS3: 6.3
github
почти 2 года назад

In the Linux kernel, the following vulnerability has been resolved: interconnect: Don't access req_list while it's being manipulated The icc_lock mutex was split into separate icc_lock and icc_bw_lock mutexes in [1] to avoid lockdep splats. However, this didn't adequately protect access to icc_node::req_list. The icc_set_bw() function will eventually iterate over req_list while only holding icc_bw_lock, but req_list can be modified while only holding icc_lock. This causes races between icc_set_bw(), of_icc_get(), and icc_put(). Example A: CPU0 CPU1 ---- ---- icc_set_bw(path_a) mutex_lock(&icc_bw_lock); icc_put(path_b) mutex_lock(&icc_lock); aggregate_requests() hlist_for_each_entry(r, ... hlist_del(... <r = invalid pointer> Example B: CPU0 CPU1 ...

EPSS

Процентиль: 0%
0.00005
Низкий

5.5 Medium

CVSS3