Описание
In the Linux kernel, the following vulnerability has been resolved:
firmware: qcom: uefisecapp: Fix memory related IO errors and crashes
It turns out that while the QSEECOM APP_SEND command has specific fields
for request and response buffers, uefisecapp expects them both to be in
a single memory region. Failure to adhere to this has (so far) resulted
in either no response being written to the response buffer (causing an
EIO to be emitted down the line), the SCM call to fail with EINVAL
(i.e., directly from TZ/firmware), or the device to be hard-reset.
While this issue can be triggered deterministically, in the current form
it seems to happen rather sporadically (which is why it has gone
unnoticed during earlier testing). This is likely due to the two
kzalloc() calls (for request and response) being directly after each
other. Which means that those likely return consecutive regions most of
the time, especially when not much else is going on in the system.
Fix this by allocating a single memory region for both request and
response buffers, properly aligning both structs inside it. This
unfortunately also means that the qcom_scm_qseecom_app_send() interface
needs to be restructured, as it should no longer map the DMA regions
separately. Therefore, move the responsibility of DMA allocation (or
mapping) to the caller.
A vulnerability was found in the Qualcomm firmware driver (qcom_qseecom_uefisecapp) in the Linux kernel. It arises from incorrect memory allocation for request and response buffers in the QSEECOM APP_SEND command. The driver expects both buffers to be in a single memory region, but they are allocated separately, leading to potential issues such as no response being written (EIO error), failure of the SCM call (EINVAL), or device hard-reset. The issue is fixed by allocating a single memory region for both buffers, with DMA allocation responsibilities moved to the caller.
Отчет
Red Hat Enterprise Linux is not vulnerable to this CVE, as it does not affect the versions or configurations of the Linux kernel used in its distributions.
Меры по смягчению последствий
Mitigation for this issue is either not available or the currently available options do not meet the Red Hat Product Security criteria comprising ease of use and deployment, applicability to widespread installation base or stability.
Затронутые пакеты
| Платформа | Пакет | Состояние | Рекомендация | Релиз |
|---|---|---|---|---|
| Red Hat Enterprise Linux 6 | kernel | Not affected | ||
| Red Hat Enterprise Linux 7 | kernel | Not affected | ||
| Red Hat Enterprise Linux 7 | kernel-rt | Not affected | ||
| Red Hat Enterprise Linux 8 | kernel | Not affected | ||
| Red Hat Enterprise Linux 8 | kernel-rt | Not affected | ||
| Red Hat Enterprise Linux 9 | kernel | Not affected | ||
| Red Hat Enterprise Linux 9 | kernel-rt | Not affected |
Показывать по
Дополнительная информация
Статус:
5.5 Medium
CVSS3
Связанные уязвимости
In the Linux kernel, the following vulnerability has been resolved: firmware: qcom: uefisecapp: Fix memory related IO errors and crashes It turns out that while the QSEECOM APP_SEND command has specific fields for request and response buffers, uefisecapp expects them both to be in a single memory region. Failure to adhere to this has (so far) resulted in either no response being written to the response buffer (causing an EIO to be emitted down the line), the SCM call to fail with EINVAL (i.e., directly from TZ/firmware), or the device to be hard-reset. While this issue can be triggered deterministically, in the current form it seems to happen rather sporadically (which is why it has gone unnoticed during earlier testing). This is likely due to the two kzalloc() calls (for request and response) being directly after each other. Which means that those likely return consecutive regions most of the time, especially when not much else is going on in the system. Fix this by allocating a si...
In the Linux kernel, the following vulnerability has been resolved: firmware: qcom: uefisecapp: Fix memory related IO errors and crashes It turns out that while the QSEECOM APP_SEND command has specific fields for request and response buffers, uefisecapp expects them both to be in a single memory region. Failure to adhere to this has (so far) resulted in either no response being written to the response buffer (causing an EIO to be emitted down the line), the SCM call to fail with EINVAL (i.e., directly from TZ/firmware), or the device to be hard-reset. While this issue can be triggered deterministically, in the current form it seems to happen rather sporadically (which is why it has gone unnoticed during earlier testing). This is likely due to the two kzalloc() calls (for request and response) being directly after each other. Which means that those likely return consecutive regions most of the time, especially when not much else is going on in the system. Fix this by allocating a s
In the Linux kernel, the following vulnerability has been resolved: f ...
In the Linux kernel, the following vulnerability has been resolved: firmware: qcom: uefisecapp: Fix memory related IO errors and crashes It turns out that while the QSEECOM APP_SEND command has specific fields for request and response buffers, uefisecapp expects them both to be in a single memory region. Failure to adhere to this has (so far) resulted in either no response being written to the response buffer (causing an EIO to be emitted down the line), the SCM call to fail with EINVAL (i.e., directly from TZ/firmware), or the device to be hard-reset. While this issue can be triggered deterministically, in the current form it seems to happen rather sporadically (which is why it has gone unnoticed during earlier testing). This is likely due to the two kzalloc() calls (for request and response) being directly after each other. Which means that those likely return consecutive regions most of the time, especially when not much else is going on in the system. Fix this by allocating ...
5.5 Medium
CVSS3