Описание
When using Arm Cortex-M Security Extensions (CMSE), Secure stack contents can be leaked to Non-secure state via floating-point registers when a Secure to Non-secure function call is made that returns a floating-point value and when this is the first use of floating-point since entering Secure state. This allows an attacker to read a limited quantity of Secure stack contents with an impact on confidentiality. This issue is specific to code generated using LLVM-based compilers.
Затронутые пакеты
| Платформа | Пакет | Состояние | Рекомендация | Релиз |
|---|---|---|---|---|
| Red Hat Enterprise Linux 8 | llvm-toolset:rhel8/clang | Fix deferred | ||
| Red Hat Enterprise Linux 9 | clang | Fix deferred |
Показывать по
Дополнительная информация
Статус:
EPSS
3.7 Low
CVSS3
Связанные уязвимости
When using Arm Cortex-M Security Extensions (CMSE), Secure stack contents can be leaked to Non-secure state via floating-point registers when a Secure to Non-secure function call is made that returns a floating-point value and when this is the first use of floating-point since entering Secure state. This allows an attacker to read a limited quantity of Secure stack contents with an impact on confidentiality. This issue is specific to code generated using LLVM-based compilers.
When using Arm Cortex-M Security Extensions (CMSE), Secure stack contents can be leaked to Non-secure state via floating-point registers when a Secure to Non-secure function call is made that returns a floating-point value and when this is the first use of floating-point since entering Secure state. This allows an attacker to read a limited quantity of Secure stack contents with an impact on confidentiality. This issue is specific to code generated using LLVM-based compilers.
When using Arm Cortex-M Security Extensions (CMSE), Secure stack cont ...
When using Arm Cortex-M Security Extensions (CMSE), Secure stack contents can be leaked to Non-secure state via floating-point registers when a Secure to Non-secure function call is made that returns a floating-point value and when this is the first use of floating-point since entering Secure state. This allows an attacker to read a limited quantity of Secure stack contents with an impact on confidentiality. This issue is specific to code generated using LLVM-based compilers.
EPSS
3.7 Low
CVSS3