Описание
In the Linux kernel, the following vulnerability has been resolved: x86/mm: Check return value from memblock_phys_alloc_range() At least with CONFIG_PHYSICAL_START=0x100000, if there is < 4 MiB of contiguous free memory available at this point, the kernel will crash and burn because memblock_phys_alloc_range() returns 0 on failure, which leads memblock_phys_free() to throw the first 4 MiB of physical memory to the wolves. At a minimum it should fail gracefully with a meaningful diagnostic, but in fact everything seems to work fine without the weird reserve allocation.
Затронутые пакеты
| Платформа | Пакет | Состояние | Рекомендация | Релиз | 
|---|---|---|---|---|
| Red Hat Enterprise Linux 10 | kernel | Affected | ||
| Red Hat Enterprise Linux 6 | kernel | Under investigation | ||
| Red Hat Enterprise Linux 7 | kernel | Under investigation | ||
| Red Hat Enterprise Linux 7 | kernel-rt | Under investigation | ||
| Red Hat Enterprise Linux 8 | kernel | Affected | ||
| Red Hat Enterprise Linux 8 | kernel-rt | Affected | ||
| Red Hat Enterprise Linux 9 | kernel | Affected | ||
| Red Hat Enterprise Linux 9 | kernel-rt | Affected | 
Показывать по
Дополнительная информация
Статус:
7 High
CVSS3
Связанные уязвимости
In the Linux kernel, the following vulnerability has been resolved: x86/mm: Check return value from memblock_phys_alloc_range() At least with CONFIG_PHYSICAL_START=0x100000, if there is < 4 MiB of contiguous free memory available at this point, the kernel will crash and burn because memblock_phys_alloc_range() returns 0 on failure, which leads memblock_phys_free() to throw the first 4 MiB of physical memory to the wolves. At a minimum it should fail gracefully with a meaningful diagnostic, but in fact everything seems to work fine without the weird reserve allocation.
In the Linux kernel, the following vulnerability has been resolved: x86/mm: Check return value from memblock_phys_alloc_range() At least with CONFIG_PHYSICAL_START=0x100000, if there is < 4 MiB of contiguous free memory available at this point, the kernel will crash and burn because memblock_phys_alloc_range() returns 0 on failure, which leads memblock_phys_free() to throw the first 4 MiB of physical memory to the wolves. At a minimum it should fail gracefully with a meaningful diagnostic, but in fact everything seems to work fine without the weird reserve allocation.
x86/mm: Check return value from memblock_phys_alloc_range()
In the Linux kernel, the following vulnerability has been resolved: x ...
In the Linux kernel, the following vulnerability has been resolved: x86/mm: Check return value from memblock_phys_alloc_range() At least with CONFIG_PHYSICAL_START=0x100000, if there is < 4 MiB of contiguous free memory available at this point, the kernel will crash and burn because memblock_phys_alloc_range() returns 0 on failure, which leads memblock_phys_free() to throw the first 4 MiB of physical memory to the wolves. At a minimum it should fail gracefully with a meaningful diagnostic, but in fact everything seems to work fine without the weird reserve allocation.
7 High
CVSS3