Логотип exploitDog
Консоль
Логотип exploitDog

exploitDog

redhat логотип

CVE-2025-38351

Опубликовано: 19 июл. 2025
Источник: redhat
CVSS3: 7.3
EPSS Низкий

Описание

In the Linux kernel, the following vulnerability has been resolved: KVM: x86/hyper-v: Skip non-canonical addresses during PV TLB flush In KVM guests with Hyper-V hypercalls enabled, the hypercalls HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST and HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX allow a guest to request invalidation of portions of a virtual TLB. For this, the hypercall parameter includes a list of GVAs that are supposed to be invalidated. However, when non-canonical GVAs are passed, there is currently no filtering in place and they are eventually passed to checked invocations of INVVPID on Intel / INVLPGA on AMD. While AMD's INVLPGA silently ignores non-canonical addresses (effectively a no-op), Intel's INVVPID explicitly signals VM-Fail and ultimately triggers the WARN_ONCE in invvpid_error(): invvpid failed: ext=0x0 vpid=1 gva=0xaaaaaaaaaaaaa000 WARNING: CPU: 6 PID: 326 at arch/x86/kvm/vmx/vmx.c:482 invvpid_error+0x91/0xa0 [kvm_intel] Modules linked in: kvm_intel kvm 9pnet_virtio irqbypass fuse CPU: 6 UID: 0 PID: 326 Comm: kvm-vm Not tainted 6.15.0 #14 PREEMPT(voluntary) RIP: 0010:invvpid_error+0x91/0xa0 [kvm_intel] Call Trace: vmx_flush_tlb_gva+0x320/0x490 [kvm_intel] kvm_hv_vcpu_flush_tlb+0x24f/0x4f0 [kvm] kvm_arch_vcpu_ioctl_run+0x3013/0x5810 [kvm] Hyper-V documents that invalid GVAs (those that are beyond a partition's GVA space) are to be ignored. While not completely clear whether this ruling also applies to non-canonical GVAs, it is likely fine to make that assumption, and manual testing on Azure confirms "real" Hyper-V interprets the specification in the same way. Skip non-canonical GVAs when processing the list of address to avoid tripping the INVVPID failure. Alternatively, KVM could filter out "bad" GVAs before inserting into the FIFO, but practically speaking the only downside of pushing validation to the final processing is that doing so is suboptimal for the guest, and no well-behaved guest will request TLB flushes for non-canonical addresses.

Отчет

While not a memory corruption or LPE, this is guest-triggerable denial-of-service with privileged instructions, which makes it relevant in cloud environments using nested virtualization or hosting untrusted workloads (e.g., CI systems, fuzzing infrastructure, research clusters). The issue was confirmed and the fix validated by testing on Azure (which implements Hyper-V). A denial-of-service vulnerability was found in the KVM module of the Linux kernel when handling paravirtualized TLB flush hypercalls (HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST{,_EX}) under Hyper-V. On Intel hosts, passing non-canonical guest virtual addresses (GVAs) from a guest may trigger a VMFailInvalid condition during INVVPID, leading to WARN_ONCE() or kernel instability. PR:L is justified because the attacker must have kernel-level privileges inside the guest VM to issue the hypercall. S:C (scope changed) applies because the bug allows actions within a guest to impact the host kernel’s stability. CIA: NNH reflects that the issue does not affect confidentiality or integrity, but can significantly affect availability through a potential host crash or soft lockup. The related to this bug Kernel config param CONFIG_KVM_HYPERV enabled only for the latest version of Red Hat Enterprise Linux 9.

Меры по смягчению последствий

Mitigation for this issue is either not available or the currently available options don't meet the Red Hat Product Security criteria comprising ease of use and deployment, applicability to widespread installation base or stability.

Затронутые пакеты

ПлатформаПакетСостояниеРекомендацияРелиз
Red Hat Enterprise Linux 10kernelAffected
Red Hat Enterprise Linux 6kernelNot affected
Red Hat Enterprise Linux 7kernelNot affected
Red Hat Enterprise Linux 7kernel-rtNot affected
Red Hat Enterprise Linux 8kernelNot affected
Red Hat Enterprise Linux 8kernel-rtNot affected
Red Hat Enterprise Linux 9kernelAffected
Red Hat Enterprise Linux 9kernel-rtAffected

Показывать по

Дополнительная информация

Статус:

Moderate
Дефект:
CWE-754
https://bugzilla.redhat.com/show_bug.cgi?id=2382059kernel: KVM: x86/hyper-v: Skip non-canonical addresses during PV TLB flush

EPSS

Процентиль: 4%
0.00022
Низкий

7.3 High

CVSS3

Связанные уязвимости

ubuntu
около 1 месяца назад

In the Linux kernel, the following vulnerability has been resolved: KVM: x86/hyper-v: Skip non-canonical addresses during PV TLB flush In KVM guests with Hyper-V hypercalls enabled, the hypercalls HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST and HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX allow a guest to request invalidation of portions of a virtual TLB. For this, the hypercall parameter includes a list of GVAs that are supposed to be invalidated. However, when non-canonical GVAs are passed, there is currently no filtering in place and they are eventually passed to checked invocations of INVVPID on Intel / INVLPGA on AMD. While AMD's INVLPGA silently ignores non-canonical addresses (effectively a no-op), Intel's INVVPID explicitly signals VM-Fail and ultimately triggers the WARN_ONCE in invvpid_error(): invvpid failed: ext=0x0 vpid=1 gva=0xaaaaaaaaaaaaa000 WARNING: CPU: 6 PID: 326 at arch/x86/kvm/vmx/vmx.c:482 invvpid_error+0x91/0xa0 [kvm_intel] Modules linked in: kvm_intel kvm 9pnet_virtio irqbypa...

nvd
около 1 месяца назад

In the Linux kernel, the following vulnerability has been resolved: KVM: x86/hyper-v: Skip non-canonical addresses during PV TLB flush In KVM guests with Hyper-V hypercalls enabled, the hypercalls HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST and HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX allow a guest to request invalidation of portions of a virtual TLB. For this, the hypercall parameter includes a list of GVAs that are supposed to be invalidated. However, when non-canonical GVAs are passed, there is currently no filtering in place and they are eventually passed to checked invocations of INVVPID on Intel / INVLPGA on AMD. While AMD's INVLPGA silently ignores non-canonical addresses (effectively a no-op), Intel's INVVPID explicitly signals VM-Fail and ultimately triggers the WARN_ONCE in invvpid_error(): invvpid failed: ext=0x0 vpid=1 gva=0xaaaaaaaaaaaaa000 WARNING: CPU: 6 PID: 326 at arch/x86/kvm/vmx/vmx.c:482 invvpid_error+0x91/0xa0 [kvm_intel] Modules linked in: kvm_intel kvm 9pnet_virti

debian
около 1 месяца назад

In the Linux kernel, the following vulnerability has been resolved: K ...

github
около 1 месяца назад

In the Linux kernel, the following vulnerability has been resolved: KVM: x86/hyper-v: Skip non-canonical addresses during PV TLB flush In KVM guests with Hyper-V hypercalls enabled, the hypercalls HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST and HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX allow a guest to request invalidation of portions of a virtual TLB. For this, the hypercall parameter includes a list of GVAs that are supposed to be invalidated. However, when non-canonical GVAs are passed, there is currently no filtering in place and they are eventually passed to checked invocations of INVVPID on Intel / INVLPGA on AMD. While AMD's INVLPGA silently ignores non-canonical addresses (effectively a no-op), Intel's INVVPID explicitly signals VM-Fail and ultimately triggers the WARN_ONCE in invvpid_error(): invvpid failed: ext=0x0 vpid=1 gva=0xaaaaaaaaaaaaa000 WARNING: CPU: 6 PID: 326 at arch/x86/kvm/vmx/vmx.c:482 invvpid_error+0x91/0xa0 [kvm_intel] Modules linked in: kvm_intel kvm 9pnet_vi...

EPSS

Процентиль: 4%
0.00022
Низкий

7.3 High

CVSS3