Описание
In the Linux kernel, the following vulnerability has been resolved: rose: fix dangling neighbour pointers in rose_rt_device_down() There are two bugs in rose_rt_device_down() that can cause use-after-free:
- The loop bound
t->count
is modified within the loop, which can cause the loop to terminate early and miss some entries. - When removing an entry from the neighbour array, the subsequent entries
are moved up to fill the gap, but the loop index
i
is still incremented, causing the next entry to be skipped. For example, if a node has three neighbours (A, A, B) with count=3 and A is being removed, the second A is not checked. i=0: (A, A, B) -> (A, B) with count=2 ^ checked i=1: (A, B) -> (A, B) with count=2 ^ checked (B, not A!) i=2: (doesn't occur because i < count is false) This leaves the second A in the array with count=2, but the rose_neigh structure has been freed. Code that accesses these entries assumes that the firstcount
entries are valid pointers, causing a use-after-free when it accesses the dangling pointer. Fix both issues by iterating over the array in reverse order with a fixed loop bound. This ensures that all entries are examined and that the removal of an entry doesn't affect subsequent iterations.
Затронутые пакеты
Платформа | Пакет | Состояние | Рекомендация | Релиз |
---|---|---|---|---|
Red Hat Enterprise Linux 10 | kernel | Not affected | ||
Red Hat Enterprise Linux 6 | kernel | Not affected | ||
Red Hat Enterprise Linux 7 | kernel | Not affected | ||
Red Hat Enterprise Linux 7 | kernel-rt | Not affected | ||
Red Hat Enterprise Linux 8 | kernel | Not affected | ||
Red Hat Enterprise Linux 8 | kernel-rt | Not affected | ||
Red Hat Enterprise Linux 9 | kernel | Not affected | ||
Red Hat Enterprise Linux 9 | kernel-rt | Not affected |
Показывать по
Дополнительная информация
Статус:
EPSS
5.5 Medium
CVSS3
Связанные уязвимости
In the Linux kernel, the following vulnerability has been resolved: rose: fix dangling neighbour pointers in rose_rt_device_down() There are two bugs in rose_rt_device_down() that can cause use-after-free: 1. The loop bound `t->count` is modified within the loop, which can cause the loop to terminate early and miss some entries. 2. When removing an entry from the neighbour array, the subsequent entries are moved up to fill the gap, but the loop index `i` is still incremented, causing the next entry to be skipped. For example, if a node has three neighbours (A, A, B) with count=3 and A is being removed, the second A is not checked. i=0: (A, A, B) -> (A, B) with count=2 ^ checked i=1: (A, B) -> (A, B) with count=2 ^ checked (B, not A!) i=2: (doesn't occur because i < count is false) This leaves the second A in the array with count=2, but the rose_neigh structure has been freed. Code that accesses these entries assumes that the first `count` entries are valid pointers, causing a use...
In the Linux kernel, the following vulnerability has been resolved: rose: fix dangling neighbour pointers in rose_rt_device_down() There are two bugs in rose_rt_device_down() that can cause use-after-free: 1. The loop bound `t->count` is modified within the loop, which can cause the loop to terminate early and miss some entries. 2. When removing an entry from the neighbour array, the subsequent entries are moved up to fill the gap, but the loop index `i` is still incremented, causing the next entry to be skipped. For example, if a node has three neighbours (A, A, B) with count=3 and A is being removed, the second A is not checked. i=0: (A, A, B) -> (A, B) with count=2 ^ checked i=1: (A, B) -> (A, B) with count=2 ^ checked (B, not A!) i=2: (doesn't occur because i < count is false) This leaves the second A in the array with count=2, but the rose_neigh structure has been freed. Code that accesses these entries assumes that the first `
In the Linux kernel, the following vulnerability has been resolved: r ...
In the Linux kernel, the following vulnerability has been resolved: rose: fix dangling neighbour pointers in rose_rt_device_down() There are two bugs in rose_rt_device_down() that can cause use-after-free: 1. The loop bound `t->count` is modified within the loop, which can cause the loop to terminate early and miss some entries. 2. When removing an entry from the neighbour array, the subsequent entries are moved up to fill the gap, but the loop index `i` is still incremented, causing the next entry to be skipped. For example, if a node has three neighbours (A, A, B) with count=3 and A is being removed, the second A is not checked. i=0: (A, A, B) -> (A, B) with count=2 ^ checked i=1: (A, B) -> (A, B) with count=2 ^ checked (B, not A!) i=2: (doesn't occur because i < count is false) This leaves the second A in the array with count=2, but the rose_neigh structure has been freed. Code that accesses these entries assumes that the firs...
EPSS
5.5 Medium
CVSS3