Описание
In the Linux kernel, the following vulnerability has been resolved: drm/imagination: Fix kernel crash when hard resetting the GPU The GPU hard reset sequence calls pm_runtime_force_suspend() and pm_runtime_force_resume(), which according to their documentation should only be used during system-wide PM transitions to sleep states. The main issue though is that depending on some internal runtime PM state as seen by pm_runtime_force_suspend() (whether the usage count is <= 1), pm_runtime_force_resume() might not resume the device unless needed. If that happens, the runtime PM resume callback pvr_power_device_resume() is not called, the GPU clocks are not re-enabled, and the kernel crashes on the next attempt to access GPU registers as part of the power-on sequence. Replace calls to pm_runtime_force_suspend() and pm_runtime_force_resume() with direct calls to the driver's runtime PM callbacks, pvr_power_device_suspend() and pvr_power_device_resume(), to ensure clocks are re-enabled and avoid the kernel crash.
Затронутые пакеты
Платформа | Пакет | Состояние | Рекомендация | Релиз |
---|---|---|---|---|
Red Hat Enterprise Linux 10 | kernel | Not affected | ||
Red Hat Enterprise Linux 6 | kernel | Not affected | ||
Red Hat Enterprise Linux 7 | kernel | Not affected | ||
Red Hat Enterprise Linux 7 | kernel-rt | Not affected | ||
Red Hat Enterprise Linux 8 | kernel | Not affected | ||
Red Hat Enterprise Linux 8 | kernel-rt | Not affected | ||
Red Hat Enterprise Linux 9 | kernel | Not affected | ||
Red Hat Enterprise Linux 9 | kernel-rt | Not affected |
Показывать по
Дополнительная информация
EPSS
5.5 Medium
CVSS3
Связанные уязвимости
In the Linux kernel, the following vulnerability has been resolved: drm/imagination: Fix kernel crash when hard resetting the GPU The GPU hard reset sequence calls pm_runtime_force_suspend() and pm_runtime_force_resume(), which according to their documentation should only be used during system-wide PM transitions to sleep states. The main issue though is that depending on some internal runtime PM state as seen by pm_runtime_force_suspend() (whether the usage count is <= 1), pm_runtime_force_resume() might not resume the device unless needed. If that happens, the runtime PM resume callback pvr_power_device_resume() is not called, the GPU clocks are not re-enabled, and the kernel crashes on the next attempt to access GPU registers as part of the power-on sequence. Replace calls to pm_runtime_force_suspend() and pm_runtime_force_resume() with direct calls to the driver's runtime PM callbacks, pvr_power_device_suspend() and pvr_power_device_resume(), to ensure clocks are re-enabled and ...
In the Linux kernel, the following vulnerability has been resolved: drm/imagination: Fix kernel crash when hard resetting the GPU The GPU hard reset sequence calls pm_runtime_force_suspend() and pm_runtime_force_resume(), which according to their documentation should only be used during system-wide PM transitions to sleep states. The main issue though is that depending on some internal runtime PM state as seen by pm_runtime_force_suspend() (whether the usage count is <= 1), pm_runtime_force_resume() might not resume the device unless needed. If that happens, the runtime PM resume callback pvr_power_device_resume() is not called, the GPU clocks are not re-enabled, and the kernel crashes on the next attempt to access GPU registers as part of the power-on sequence. Replace calls to pm_runtime_force_suspend() and pm_runtime_force_resume() with direct calls to the driver's runtime PM callbacks, pvr_power_device_suspend() and pvr_power_device_resume(), to ensure clocks are re-enabled and
In the Linux kernel, the following vulnerability has been resolved: d ...
In the Linux kernel, the following vulnerability has been resolved: drm/imagination: Fix kernel crash when hard resetting the GPU The GPU hard reset sequence calls pm_runtime_force_suspend() and pm_runtime_force_resume(), which according to their documentation should only be used during system-wide PM transitions to sleep states. The main issue though is that depending on some internal runtime PM state as seen by pm_runtime_force_suspend() (whether the usage count is <= 1), pm_runtime_force_resume() might not resume the device unless needed. If that happens, the runtime PM resume callback pvr_power_device_resume() is not called, the GPU clocks are not re-enabled, and the kernel crashes on the next attempt to access GPU registers as part of the power-on sequence. Replace calls to pm_runtime_force_suspend() and pm_runtime_force_resume() with direct calls to the driver's runtime PM callbacks, pvr_power_device_suspend() and pvr_power_device_resume(), to ensure clocks are re-enabled ...
ELSA-2025-20551: Unbreakable Enterprise kernel security update (IMPORTANT)
EPSS
5.5 Medium
CVSS3