Описание
Security update for openssl
This update for openssl fixes the following issues contained in the OpenSSL Security Advisory [26 Jan 2017] (bsc#1021641)
Security issues fixed:
- CVE-2016-7055: The x86_64 optimized montgomery multiplication may produce incorrect results (bsc#1009528)
- CVE-2017-3731: Truncated packet could crash via OOB read (bsc#1022085)
- CVE-2017-3732: BN_mod_exp may produce incorrect results on x86_64 (bsc#1022086)
- Degrade the 3DES cipher to MEDIUM in SSLv2 (bsc#1001912)
Non-security issues fixed:
- fix crash in openssl speed (bsc#1000677)
- fix X509_CERT_FILE path (bsc#1022271)
- AES XTS key parts must not be identical in FIPS mode (bsc#1019637)
Список пакетов
SUSE Linux Enterprise Desktop 12 SP2
SUSE Linux Enterprise Server 12 SP2
SUSE Linux Enterprise Server for Raspberry Pi 12 SP2
SUSE Linux Enterprise Server for SAP Applications 12 SP2
SUSE Linux Enterprise Software Development Kit 12 SP2
Ссылки
- Link for SUSE-SU-2017:0441-1
- E-Mail link for SUSE-SU-2017:0441-1
- SUSE Security Ratings
- SUSE Bug 1000677
- SUSE Bug 1001912
- SUSE Bug 1009528
- SUSE Bug 1019637
- SUSE Bug 1021641
- SUSE Bug 1022085
- SUSE Bug 1022086
- SUSE Bug 1022271
- SUSE CVE CVE-2016-7055 page
- SUSE CVE CVE-2017-3731 page
- SUSE CVE CVE-2017-3732 page
Описание
There is a carry propagating bug in the Broadwell-specific Montgomery multiplication procedure in OpenSSL 1.0.2 and 1.1.0 before 1.1.0c that handles input lengths divisible by, but longer than 256 bits. Analysis suggests that attacks against RSA, DSA and DH private keys are impossible. This is because the subroutine in question is not used in operations with the private key itself and an input of the attacker's direct choice. Otherwise the bug can manifest itself as transient authentication and key negotiation failures or reproducible erroneous outcome of public-key operations with specially crafted input. Among EC algorithms only Brainpool P-512 curves are affected and one presumably can attack ECDH key negotiation. Impact was not analyzed in detail, because pre-requisites for attack are considered unlikely. Namely multiple clients have to choose the curve in question and the server has to share the private key among them, neither of which is default behaviour. Even then only clients that chose the curve will be affected.
Затронутые продукты
Ссылки
- CVE-2016-7055
- SUSE Bug 1009528
- SUSE Bug 1021641
Описание
If an SSL/TLS server or client is running on a 32-bit host, and a specific cipher is being used, then a truncated packet can cause that server or client to perform an out-of-bounds read, usually resulting in a crash. For OpenSSL 1.1.0, the crash can be triggered when using CHACHA20/POLY1305; users should upgrade to 1.1.0d. For Openssl 1.0.2, the crash can be triggered when using RC4-MD5; users who have not disabled that algorithm should update to 1.0.2k.
Затронутые продукты
Ссылки
- CVE-2017-3731
- SUSE Bug 1021641
- SUSE Bug 1022085
- SUSE Bug 1064118
- SUSE Bug 1064119
Описание
There is a carry propagating bug in the x86_64 Montgomery squaring procedure in OpenSSL 1.0.2 before 1.0.2k and 1.1.0 before 1.1.0d. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be very significant and likely only accessible to a limited number of attackers. An attacker would additionally need online access to an unpatched system using the target private key in a scenario with persistent DH parameters and a private key that is shared between multiple clients. For example this can occur by default in OpenSSL DHE based SSL/TLS ciphersuites. Note: This issue is very similar to CVE-2015-3193 but must be treated as a separate problem.
Затронутые продукты
Ссылки
- CVE-2017-3732
- SUSE Bug 1021641
- SUSE Bug 1022086
- SUSE Bug 1049418
- SUSE Bug 1049421
- SUSE Bug 1049422
- SUSE Bug 1066242
- SUSE Bug 1071906
- SUSE Bug 957814