Описание
Security update for openssl-3
This update for openssl-3 fixes the following issues:
- CVE-2023-6129: Fixed vector register clobbering on PowerPC. (bsc#1218690)
- CVE-2023-6237: Fixed excessive time spent checking invalid RSA public keys. (bsc#1218810)
Список пакетов
Container suse/ltss/sle15.5/sle15:latest
SUSE Linux Enterprise Module for Basesystem 15 SP5
openSUSE Leap 15.5
Ссылки
- Link for SUSE-SU-2024:0172-1
- E-Mail link for SUSE-SU-2024:0172-1
- SUSE Security Ratings
- SUSE Bug 1218690
- SUSE Bug 1218810
- SUSE CVE CVE-2023-6129 page
- SUSE CVE CVE-2023-6237 page
Описание
Issue summary: The POLY1305 MAC (message authentication code) implementation contains a bug that might corrupt the internal state of applications running on PowerPC CPU based platforms if the CPU provides vector instructions. Impact summary: If an attacker can influence whether the POLY1305 MAC algorithm is used, the application state might be corrupted with various application dependent consequences. The POLY1305 MAC (message authentication code) implementation in OpenSSL for PowerPC CPUs restores the contents of vector registers in a different order than they are saved. Thus the contents of some of these vector registers are corrupted when returning to the caller. The vulnerable code is used only on newer PowerPC processors supporting the PowerISA 2.07 instructions. The consequences of this kind of internal application state corruption can be various - from no consequences, if the calling application does not depend on the contents of non-volatile XMM registers at all, to the worst consequences, where the attacker could get complete control of the application process. However unless the compiler uses the vector registers for storing pointers, the most likely consequence, if any, would be an incorrect result of some application dependent calculations or a crash leading to a denial of service. The POLY1305 MAC algorithm is most frequently used as part of the CHACHA20-POLY1305 AEAD (authenticated encryption with associated data) algorithm. The most common usage of this AEAD cipher is with TLS protocol versions 1.2 and 1.3. If this cipher is enabled on the server a malicious client can influence whether this AEAD cipher is used. This implies that TLS server applications using OpenSSL can be potentially impacted. However we are currently not aware of any concrete application that would be affected by this issue therefore we consider this a Low severity security issue.
Затронутые продукты
Ссылки
- CVE-2023-6129
- SUSE Bug 1218690
Описание
Issue summary: Checking excessively long invalid RSA public keys may take a long time. Impact summary: Applications that use the function EVP_PKEY_public_check() to check RSA public keys may experience long delays. Where the key that is being checked has been obtained from an untrusted source this may lead to a Denial of Service. When function EVP_PKEY_public_check() is called on RSA public keys, a computation is done to confirm that the RSA modulus, n, is composite. For valid RSA keys, n is a product of two or more large primes and this computation completes quickly. However, if n is an overly large prime, then this computation would take a long time. An application that calls EVP_PKEY_public_check() and supplies an RSA key obtained from an untrusted source could be vulnerable to a Denial of Service attack. The function EVP_PKEY_public_check() is not called from other OpenSSL functions however it is called from the OpenSSL pkey command line application. For that reason that application is also vulnerable if used with the '-pubin' and '-check' options on untrusted data. The OpenSSL SSL/TLS implementation is not affected by this issue. The OpenSSL 3.0 and 3.1 FIPS providers are affected by this issue.
Затронутые продукты
Ссылки
- CVE-2023-6237
- SUSE Bug 1218810