Описание
Security update for the Linux Kernel
The SUSE Linux Enterprise 16.0 kernel was updated to fix various security issues
The following security issues were fixed:
- CVE-2025-38704: rcu/nocb: Fix possible invalid rdp's->nocb_cb_kthread pointer (bsc#1254408).
- CVE-2025-39880: ceph: fix race condition validating r_parent before applying state (bsc#1250388).
- CVE-2025-39977: futex: Prevent use-after-free during requeue-PI (bsc#1252046).
- CVE-2025-40042: tracing: Fix race condition in kprobe initialization causing NULL pointer dereference (bsc#1252861).
- CVE-2025-40123: bpf: Enforce expected_attach_type for tailcall compatibility (bsc#1253365).
- CVE-2025-40130: scsi: ufs: core: Fix data race in CPU latency PM QoS request handling
- CVE-2025-40160: xen/events: Cleanup find_virq() return codes (bsc#1253400).
- CVE-2025-40167: ext4: detect invalid INLINE_DATA + EXTENTS flag combination (bsc#1253458).
- CVE-2025-40170: net: use dst_dev_rcu() in sk_setup_caps() (bsc#1253413).
- CVE-2025-40179: ext4: verify orphan file size is not too big (bsc#1253442).
- CVE-2025-40190: ext4: guard against EA inode refcount underflow in xattr update (bsc#1253623).
- CVE-2025-40214: af_unix: Initialise scc_index in unix_add_edge() (bsc#1254961).
- CVE-2025-40215: xfrm: delete x->tunnel as we delete x (bsc#1254959).
- CVE-2025-40218: mm/damon/vaddr: do not repeat pte_offset_map_lock() until success (bsc#1254964).
- CVE-2025-40220: fuse: fix livelock in synchronous file put from fuseblk workers (bsc#1254520).
- CVE-2025-40231: vsock: fix lock inversion in vsock_assign_transport() (bsc#1254815).
- CVE-2025-40233: ocfs2: clear extent cache after moving/defragmenting extents (bsc#1254813).
- CVE-2025-40237: fs/notify: call exportfs_encode_fid with s_umount (bsc#1254809).
- CVE-2025-40238: net/mlx5: Fix IPsec cleanup over MPV device (bsc#1254871).
- CVE-2025-40239: net: phy: micrel: always set shared->phydev for LAN8814 (bsc#1254868).
- CVE-2025-40242: gfs2: Fix unlikely race in gdlm_put_lock (bsc#1255075).
- CVE-2025-40246: xfs: fix out of bounds memory read error in symlink repair (bsc#1254861).
- CVE-2025-40248: vsock: Ignore signal/timeout on connect() if already established (bsc#1254864).
- CVE-2025-40250: net/mlx5: Clean up only new IRQ glue on request_irq() failure (bsc#1254854).
- CVE-2025-40251: devlink: rate: Unset parent pointer in devl_rate_nodes_destroy (bsc#1254856).
- CVE-2025-40252: net: qlogic/qede: fix potential out-of-bounds read in qede_tpa_cont() and qede_tpa_end() (bsc#1254849).
- CVE-2025-40254: net: openvswitch: remove never-working support for setting nsh fields (bsc#1254852).
- CVE-2025-40255: net: core: prevent NULL deref in generic_hwtstamp_ioctl_lower() (bsc#1255156).
- CVE-2025-40258: mptcp: fix race condition in mptcp_schedule_work() (bsc#1254843).
- CVE-2025-40264: be2net: pass wrb_params in case of OS2BMC (bsc#1254835).
- CVE-2025-40268: cifs: client: fix memory leak in smb3_fs_context_parse_param (bsc#1255082).
- CVE-2025-40271: fs/proc: fix uaf in proc_readdir_de() (bsc#1255297).
- CVE-2025-40274: KVM: guest_memfd: Remove bindings on memslot deletion when gmem is dying (bsc#1254830).
- CVE-2025-40276: drm/panthor: Flush shmem writes before mapping buffers CPU-uncached (bsc#1254824).
- CVE-2025-40278: net: sched: act_ife: initialize struct tc_ife to fix KMSAN kernel-infoleak (bsc#1254825).
- CVE-2025-40279: net: sched: act_connmark: initialize struct tc_ife to fix kernel leak (bsc#1254846).
- CVE-2025-40280: tipc: Fix use-after-free in tipc_mon_reinit_self() (bsc#1254847).
- CVE-2025-40292: virtio-net: fix received length check in big packets (bsc#1255175).
- CVE-2025-40293: iommufd: Don't overflow during division for dirty tracking (bsc#1255179).
- CVE-2025-40297: net: bridge: fix use-after-free due to MST port state bypass (bsc#1255187).
- CVE-2025-40319: bpf: Sync pending IRQ work before freeing ring buffer (bsc#1254794).
- CVE-2025-40328: smb: client: fix potential UAF in smb2_close_cached_fid() (bsc#1254624).
- CVE-2025-40330: bnxt_en: Shutdown FW DMA in bnxt_shutdown() (bsc#1254616).
- CVE-2025-40331: sctp: Prevent TOCTOU out-of-bounds write (bsc#1254615).
- CVE-2025-40338: ASoC: Intel: avs: Do not share the name pointer between components (bsc#1255273).
- CVE-2025-40346: arch_topology: Fix incorrect error check in topology_parse_cpu_capacity() (bsc#1255318).
- CVE-2025-40347: net: enetc: fix the deadlock of enetc_mdio_lock (bsc#1255262).
- CVE-2025-40350: net/mlx5e: RX, Fix generating skb from non-linear xdp_buff for striding RQ (bsc#1255260).
- CVE-2025-40355: sysfs: check visibility before changing group attribute ownership (bsc#1255261).
- CVE-2025-40357: net/smc: fix general protection fault in __smc_diag_dump (bsc#1255097).
- CVE-2025-40359: perf/x86/intel: Fix KASAN global-out-of-bounds warning (bsc#1255087).
- CVE-2025-40362: ceph: fix multifs mds auth caps issue (bsc#1255103).
- CVE-2025-68171: x86/fpu: Ensure XFD state on signal delivery (bsc#1255255).
- CVE-2025-68197: bnxt_en: Fix null pointer dereference in bnxt_bs_trace_check_wrap() (bsc#1255242).
- CVE-2025-68198: crash: fix crashkernel resource shrink (bsc#1255243).
- CVE-2025-68202: sched_ext: Fix unsafe locking in the scx_dump_state() (bsc#1255223).
- CVE-2025-68206: netfilter: nft_ct: add seqadj extension for natted connections (bsc#1255142).
- CVE-2025-68208: bpf: account for current allocated stack depth in widen_imprecise_scalars() (bsc#1255227).
- CVE-2025-68209: mlx5: Fix default values in create CQ (bsc#1255230).
- CVE-2025-68215: ice: fix PTP cleanup on driver removal in error path (bsc#1255226).
- CVE-2025-68239: binfmt_misc: restore write access before closing files opened by open_exec() (bsc#1255272).
- CVE-2025-68259: KVM: SVM: Don't skip unrelated instruction if INT3/INTO is replaced (bsc#1255199).
- CVE-2025-68264: ext4: refresh inline data size before write operations (bsc#1255380).
- CVE-2025-68283: libceph: replace BUG_ON with bounds check for map->max_osd (bsc#1255379).
- CVE-2025-68284: libceph: prevent potential out-of-bounds writes in handle_auth_session_key() (bsc#1255377).
- CVE-2025-68285: libceph: fix potential use-after-free in have_mon_and_osd_map() (bsc#1255401).
- CVE-2025-68293: mm/huge_memory: fix NULL pointer deference when splitting folio (bsc#1255150).
- CVE-2025-68301: net: atlantic: fix fragment overflow handling in RX path (bsc#1255120).
- CVE-2025-68302: net: sxgbe: fix potential NULL dereference in sxgbe_rx() (bsc#1255121).
- CVE-2025-68317: io_uring/zctx: check chained notif contexts (bsc#1255354).
- CVE-2025-68340: team: Move team device type change at the end of team_port_add (bsc#1255507).
- CVE-2025-68353: net: vxlan: prevent NULL deref in vxlan_xmit_one (bsc#1255533).
- CVE-2025-68363: bpf: Check skb->transport_header is set in bpf_skb_check_mtu (bsc#1255552).
- CVE-2025-68378: bpf: Refactor stack map trace depth calculation into helper function (bsc#1255614).
- CVE-2025-68736: landlock: Optimize file path walks and prepare for audit support (bsc#1255698).
- CVE-2025-68742: bpf: Fix invalid prog->stats access when update_effective_progs fails (bsc#1255707).
- CVE-2025-68744: bpf: Free special fields when update [lru_,]percpu_hash maps (bsc#1255709).
- CVE-2025-71096: RDMA/core: Check for the presence of LS_NLA_TYPE_DGID correctly (bsc#1256606).
The following non security issues were fixed:
- KVM: SEV: Drop GHCB_VERSION_DEFAULT and open code it (bsc#1255672).
- Set HZ=1000 for ppc64 default configuration (jsc#PED-14344)
- bpf: Do not limit bpf_cgroup_from_id to current's namespace (bsc#1255433).
- btrfs: handle aligned EOF truncation correctly for subpage cases (bsc#1253238).
- cgroup: rstat: use LOCK CMPXCHG in css_rstat_updated (bsc#1255434).
- cifs: update dstaddr whenever channel iface is updated (git-fixes).
- cpuidle: menu: Use residency threshold in polling state override decisions (bsc#1255026).
- cpuset: fix warning when disabling remote partition (bsc#1256794).
- ext4: use optimized mballoc scanning regardless of inode format (bsc#1254378).
- net: usb: pegasus: fix memory leak in update_eth_regs_async() (git-fixes).
- netdevsim: print human readable IP address (bsc#1255071).
- powerpc/eeh: fix recursive pci_lock_rescan_remove locking in EEH event handling (bsc#1253262 ltc#216029).
- powerpc/kexec: Enable SMT before waking offline CPUs (bsc#1214285 bsc#1205462 ltc#200161 ltc#200588 git-fixes bsc#1253739 ltc#211493 bsc#1254244 ltc#216496).
- sched: Increase sched_tick_remote timeout (bsc#1254510).
- selftests: net: fib-onlink-tests: Set high metric for default IPv6 route (bsc#1255346).
- selftests: net: use slowwait to make sure IPv6 setup finished (bsc#1255349).
- selftests: net: use slowwait to stabilize vrf_route_leaking test (bsc#1255349).
- serial: xilinx_uartps: Use helper function hrtimer_update_function() (stable-fixes).
- supported.conf: Mark lan 743x supported (jsc#PED-14571)
- tick/sched: Limit non-timekeeper CPUs calling jiffies update (bsc#1254477).
- wifi: ath10k: Avoid vdev delete timeout when firmware is already down (stable-fixes).
- x86/microcode/AMD: Fix Entrysign revision check for Zen5/Strix Halo (bsc#1256495).
- x86/microcode/AMD: Make __verify_patch_size() return bool (bsc#1256495).
- x86/microcode/AMD: Remove bogus comment from parse_container() (bsc#1256495).
- x86/microcode/AMD: Select which microcode patch to load (bsc#1256495).
- x86/microcode/AMD: Use sha256() instead of init/update/final (bsc#1256495).
Список пакетов
openSUSE Leap 16.0
Ссылки
- SUSE Security Ratings
- SUSE Bug 1205462
- SUSE Bug 1214285
- SUSE Bug 1243112
- SUSE Bug 1245193
- SUSE Bug 1247500
- SUSE Bug 1250388
- SUSE Bug 1252046
- SUSE Bug 1252861
- SUSE Bug 1253155
- SUSE Bug 1253238
- SUSE Bug 1253262
- SUSE Bug 1253365
- SUSE Bug 1253400
- SUSE Bug 1253413
- SUSE Bug 1253414
- SUSE Bug 1253442
- SUSE Bug 1253458
- SUSE Bug 1253623
- SUSE Bug 1253674
Описание
In the Linux kernel, the following vulnerability has been resolved: rcu/nocb: Fix possible invalid rdp's->nocb_cb_kthread pointer access In the preparation stage of CPU online, if the corresponding the rdp's->nocb_cb_kthread does not exist, will be created, there is a situation where the rdp's rcuop kthreads creation fails, and then de-offload this CPU's rdp, does not assign this CPU's rdp->nocb_cb_kthread pointer, but this rdp's->nocb_gp_rdp and rdp's->rdp_gp->nocb_gp_kthread is still valid. This will cause the subsequent re-offload operation of this offline CPU, which will pass the conditional check and the kthread_unpark() will access invalid rdp's->nocb_cb_kthread pointer. This commit therefore use rdp's->nocb_gp_kthread instead of rdp_gp's->nocb_gp_kthread for safety check.
Затронутые продукты
Ссылки
- CVE-2025-38704
- SUSE Bug 1254408
Описание
In the Linux kernel, the following vulnerability has been resolved: libceph: fix invalid accesses to ceph_connection_v1_info There is a place where generic code in messenger.c is reading and another place where it is writing to con->v1 union member without checking that the union member is active (i.e. msgr1 is in use). On 64-bit systems, con->v1.auth_retry overlaps with con->v2.out_iter, so such a read is almost guaranteed to return a bogus value instead of 0 when msgr2 is in use. This ends up being fairly benign because the side effect is just the invalidation of the authorizer and successive fetching of new tickets. con->v1.connect_seq overlaps with con->v2.conn_bufs and the fact that it's being written to can cause more serious consequences, but luckily it's not something that happens often.
Затронутые продукты
Ссылки
- CVE-2025-39880
- SUSE Bug 1250388
Описание
In the Linux kernel, the following vulnerability has been resolved: futex: Prevent use-after-free during requeue-PI syzbot managed to trigger the following race: T1 T2 futex_wait_requeue_pi() futex_do_wait() schedule() futex_requeue() futex_proxy_trylock_atomic() futex_requeue_pi_prepare() requeue_pi_wake_futex() futex_requeue_pi_complete() /* preempt */ * timeout/ signal wakes T1 * futex_requeue_pi_wakeup_sync() // Q_REQUEUE_PI_LOCKED futex_hash_put() // back to userland, on stack futex_q is garbage /* back */ wake_up_state(q->task, TASK_NORMAL); In this scenario futex_wait_requeue_pi() is able to leave without using futex_q::lock_ptr for synchronization. This can be prevented by reading futex_q::task before updating the futex_q::requeue_state. A reference on the task_struct is not needed because requeue_pi_wake_futex() is invoked with a spinlock_t held which implies a RCU read section. Even if T1 terminates immediately after, the task_struct will remain valid during T2's wake_up_state(). A READ_ONCE on futex_q::task before futex_requeue_pi_complete() is enough because it ensures that the variable is read before the state is updated. Read futex_q::task before updating the requeue state, use it for the following wakeup.
Затронутые продукты
Ссылки
- CVE-2025-39977
- SUSE Bug 1252046
- SUSE Bug 1252048
Описание
In the Linux kernel, the following vulnerability has been resolved: tracing: Fix race condition in kprobe initialization causing NULL pointer dereference There is a critical race condition in kprobe initialization that can lead to NULL pointer dereference and kernel crash. [1135630.084782] Unable to handle kernel paging request at virtual address 0000710a04630000 ... [1135630.260314] pstate: 404003c9 (nZcv DAIF +PAN -UAO) [1135630.269239] pc : kprobe_perf_func+0x30/0x260 [1135630.277643] lr : kprobe_dispatcher+0x44/0x60 [1135630.286041] sp : ffffaeff4977fa40 [1135630.293441] x29: ffffaeff4977fa40 x28: ffffaf015340e400 [1135630.302837] x27: 0000000000000000 x26: 0000000000000000 [1135630.312257] x25: ffffaf029ed108a8 x24: ffffaf015340e528 [1135630.321705] x23: ffffaeff4977fc50 x22: ffffaeff4977fc50 [1135630.331154] x21: 0000000000000000 x20: ffffaeff4977fc50 [1135630.340586] x19: ffffaf015340e400 x18: 0000000000000000 [1135630.349985] x17: 0000000000000000 x16: 0000000000000000 [1135630.359285] x15: 0000000000000000 x14: 0000000000000000 [1135630.368445] x13: 0000000000000000 x12: 0000000000000000 [1135630.377473] x11: 0000000000000000 x10: 0000000000000000 [1135630.386411] x9 : 0000000000000000 x8 : 0000000000000000 [1135630.395252] x7 : 0000000000000000 x6 : 0000000000000000 [1135630.403963] x5 : 0000000000000000 x4 : 0000000000000000 [1135630.412545] x3 : 0000710a04630000 x2 : 0000000000000006 [1135630.421021] x1 : ffffaeff4977fc50 x0 : 0000710a04630000 [1135630.429410] Call trace: [1135630.434828] kprobe_perf_func+0x30/0x260 [1135630.441661] kprobe_dispatcher+0x44/0x60 [1135630.448396] aggr_pre_handler+0x70/0xc8 [1135630.454959] kprobe_breakpoint_handler+0x140/0x1e0 [1135630.462435] brk_handler+0xbc/0xd8 [1135630.468437] do_debug_exception+0x84/0x138 [1135630.475074] el1_dbg+0x18/0x8c [1135630.480582] security_file_permission+0x0/0xd0 [1135630.487426] vfs_write+0x70/0x1c0 [1135630.493059] ksys_write+0x5c/0xc8 [1135630.498638] __arm64_sys_write+0x24/0x30 [1135630.504821] el0_svc_common+0x78/0x130 [1135630.510838] el0_svc_handler+0x38/0x78 [1135630.516834] el0_svc+0x8/0x1b0 kernel/trace/trace_kprobe.c: 1308 0xffff3df8995039ec <kprobe_perf_func+0x2c>: ldr x21, [x24,#120] include/linux/compiler.h: 294 0xffff3df8995039f0 <kprobe_perf_func+0x30>: ldr x1, [x21,x0] kernel/trace/trace_kprobe.c 1308: head = this_cpu_ptr(call->perf_events); 1309: if (hlist_empty(head)) 1310: return 0; crash> struct trace_event_call -o struct trace_event_call { ... [120] struct hlist_head *perf_events; //(call->perf_event) ... } crash> struct trace_event_call ffffaf015340e528 struct trace_event_call { ... perf_events = 0xffff0ad5fa89f088, //this value is correct, but x21 = 0 ... } Race Condition Analysis: The race occurs between kprobe activation and perf_events initialization: CPU0 CPU1 ==== ==== perf_kprobe_init perf_trace_event_init tp_event->perf_events = list;(1) tp_event->class->reg (2)<- KPROBE ACTIVE Debug exception triggers ... kprobe_dispatcher kprobe_perf_func (tk->tp.flags & TP_FLAG_PROFILE) head = this_cpu_ptr(call->perf_events)(3) (perf_events is still NULL) Problem: 1. CPU0 executes (1) assigning tp_event->perf_events = list 2. CPU0 executes (2) enabling kprobe functionality via class->reg() 3. CPU1 triggers and reaches kprobe_dispatcher 4. CPU1 checks TP_FLAG_PROFILE - condition passes (step 2 completed) 5. CPU1 calls kprobe_perf_func() and crashes at (3) because call->perf_events is still NULL CPU1 sees that kprobe functionality is enabled but does not see that perf_events has been assigned. Add pairing read an ---truncated---
Затронутые продукты
Ссылки
- CVE-2025-40042
- SUSE Bug 1252861
Описание
In the Linux kernel, the following vulnerability has been resolved: bpf: Enforce expected_attach_type for tailcall compatibility Yinhao et al. recently reported: Our fuzzer tool discovered an uninitialized pointer issue in the bpf_prog_test_run_xdp() function within the Linux kernel's BPF subsystem. This leads to a NULL pointer dereference when a BPF program attempts to deference the txq member of struct xdp_buff object. The test initializes two programs of BPF_PROG_TYPE_XDP: progA acts as the entry point for bpf_prog_test_run_xdp() and its expected_attach_type can neither be of be BPF_XDP_DEVMAP nor BPF_XDP_CPUMAP. progA calls into a slot of a tailcall map it owns. progB's expected_attach_type must be BPF_XDP_DEVMAP to pass xdp_is_valid_access() validation. The program returns struct xdp_md's egress_ifindex, and the latter is only allowed to be accessed under mentioned expected_attach_type. progB is then inserted into the tailcall which progA calls. The underlying issue goes beyond XDP though. Another example are programs of type BPF_PROG_TYPE_CGROUP_SOCK_ADDR. sock_addr_is_valid_access() as well as sock_addr_func_proto() have different logic depending on the programs' expected_attach_type. Similarly, a program attached to BPF_CGROUP_INET4_GETPEERNAME should not be allowed doing a tailcall into a program which calls bpf_bind() out of BPF which is only enabled for BPF_CGROUP_INET4_CONNECT. In short, specifying expected_attach_type allows to open up additional functionality or restrictions beyond what the basic bpf_prog_type enables. The use of tailcalls must not violate these constraints. Fix it by enforcing expected_attach_type in __bpf_prog_map_compatible(). Note that we only enforce this for tailcall maps, but not for BPF devmaps or cpumaps: There, the programs are invoked through dev_map_bpf_prog_run*() and cpu_map_bpf_prog_run*() which set up a new environment / context and therefore these situations are not prone to this issue.
Затронутые продукты
Ссылки
- CVE-2025-40123
- SUSE Bug 1253365
Описание
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Fix data race in CPU latency PM QoS request handling The cpu_latency_qos_add/remove/update_request interfaces lack internal synchronization by design, requiring the caller to ensure thread safety. The current implementation relies on the 'pm_qos_enabled' flag, which is insufficient to prevent concurrent access and cannot serve as a proper synchronization mechanism. This has led to data races and list corruption issues. A typical race condition call trace is: [Thread A] ufshcd_pm_qos_exit() --> cpu_latency_qos_remove_request() --> cpu_latency_qos_apply(); --> pm_qos_update_target() --> plist_del <--(1) delete plist node --> memset(req, 0, sizeof(*req)); --> hba->pm_qos_enabled = false; [Thread B] ufshcd_devfreq_target --> ufshcd_devfreq_scale --> ufshcd_scale_clks --> ufshcd_pm_qos_update <--(2) pm_qos_enabled is true --> cpu_latency_qos_update_request --> pm_qos_update_target --> plist_del <--(3) plist node use-after-free Introduces a dedicated mutex to serialize PM QoS operations, preventing data races and ensuring safe access to PM QoS resources, including sysfs interface reads.
Затронутые продукты
Ссылки
- CVE-2025-40130
- SUSE Bug 1253414
- SUSE Bug 1253415
Описание
In the Linux kernel, the following vulnerability has been resolved: xen/events: Return -EEXIST for bound VIRQs Change find_virq() to return -EEXIST when a VIRQ is bound to a different CPU than the one passed in. With that, remove the BUG_ON() from bind_virq_to_irq() to propogate the error upwards. Some VIRQs are per-cpu, but others are per-domain or global. Those must be bound to CPU0 and can then migrate elsewhere. The lookup for per-domain and global will probably fail when migrated off CPU 0, especially when the current CPU is tracked. This now returns -EEXIST instead of BUG_ON(). A second call to bind a per-domain or global VIRQ is not expected, but make it non-fatal to avoid trying to look up the irq, since we don't know which per_cpu(virq_to_irq) it will be in.
Затронутые продукты
Ссылки
- CVE-2025-40160
- SUSE Bug 1253400
Описание
In the Linux kernel, the following vulnerability has been resolved: ext4: detect invalid INLINE_DATA + EXTENTS flag combination syzbot reported a BUG_ON in ext4_es_cache_extent() when opening a verity file on a corrupted ext4 filesystem mounted without a journal. The issue is that the filesystem has an inode with both the INLINE_DATA and EXTENTS flags set: EXT4-fs error (device loop0): ext4_cache_extents:545: inode #15: comm syz.0.17: corrupted extent tree: lblk 0 < prev 66 Investigation revealed that the inode has both flags set: DEBUG: inode 15 - flag=1, i_inline_off=164, has_inline=1, extents_flag=1 This is an invalid combination since an inode should have either: - INLINE_DATA: data stored directly in the inode - EXTENTS: data stored in extent-mapped blocks Having both flags causes ext4_has_inline_data() to return true, skipping extent tree validation in __ext4_iget(). The unvalidated out-of-order extents then trigger a BUG_ON in ext4_es_cache_extent() due to integer underflow when calculating hole sizes. Fix this by detecting this invalid flag combination early in ext4_iget() and rejecting the corrupted inode.
Затронутые продукты
Ссылки
- CVE-2025-40167
- SUSE Bug 1253458
Описание
In the Linux kernel, the following vulnerability has been resolved: net: use dst_dev_rcu() in sk_setup_caps() Use RCU to protect accesses to dst->dev from sk_setup_caps() and sk_dst_gso_max_size(). Also use dst_dev_rcu() in ip6_dst_mtu_maybe_forward(), and ip_dst_mtu_maybe_forward(). ip4_dst_hoplimit() can use dst_dev_net_rcu().
Затронутые продукты
Ссылки
- CVE-2025-40170
- SUSE Bug 1253413
Описание
In the Linux kernel, the following vulnerability has been resolved: ext4: verify orphan file size is not too big In principle orphan file can be arbitrarily large. However orphan replay needs to traverse it all and we also pin all its buffers in memory. Thus filesystems with absurdly large orphan files can lead to big amounts of memory consumed. Limit orphan file size to a sane value and also use kvmalloc() for allocating array of block descriptor structures to avoid large order allocations for sane but large orphan files.
Затронутые продукты
Ссылки
- CVE-2025-40179
- SUSE Bug 1253442
Описание
In the Linux kernel, the following vulnerability has been resolved: ext4: guard against EA inode refcount underflow in xattr update syzkaller found a path where ext4_xattr_inode_update_ref() reads an EA inode refcount that is already <= 0 and then applies ref_change (often -1). That lets the refcount underflow and we proceed with a bogus value, triggering errors like: EXT4-fs error: EA inode <n> ref underflow: ref_count=-1 ref_change=-1 EXT4-fs warning: ea_inode dec ref err=-117 Make the invariant explicit: if the current refcount is non-positive, treat this as on-disk corruption, emit ext4_error_inode(), and fail the operation with -EFSCORRUPTED instead of updating the refcount. Delete the WARN_ONCE() as negative refcounts are now impossible; keep error reporting in ext4_error_inode(). This prevents the underflow and the follow-on orphan/cleanup churn.
Затронутые продукты
Ссылки
- CVE-2025-40190
- SUSE Bug 1253623
Описание
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix memory leak of qgroup_list in btrfs_add_qgroup_relation When btrfs_add_qgroup_relation() is called with invalid qgroup levels (src >= dst), the function returns -EINVAL directly without freeing the preallocated qgroup_list structure passed by the caller. This causes a memory leak because the caller unconditionally sets the pointer to NULL after the call, preventing any cleanup. The issue occurs because the level validation check happens before the mutex is acquired and before any error handling path that would free the prealloc pointer. On this early return, the cleanup code at the 'out' label (which includes kfree(prealloc)) is never reached. In btrfs_ioctl_qgroup_assign(), the code pattern is: prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL); ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc); prealloc = NULL; // Always set to NULL regardless of return value ... kfree(prealloc); // This becomes kfree(NULL), does nothing When the level check fails, 'prealloc' is never freed by either the callee or the caller, resulting in a 64-byte memory leak per failed operation. This can be triggered repeatedly by an unprivileged user with access to a writable btrfs mount, potentially exhausting kernel memory. Fix this by freeing prealloc before the early return, ensuring prealloc is always freed on all error paths.
Затронутые продукты
Ссылки
- CVE-2025-40209
- SUSE Bug 1254128
Описание
In the Linux kernel, the following vulnerability has been resolved: ACPI: video: Fix use-after-free in acpi_video_switch_brightness() The switch_brightness_work delayed work accesses device->brightness and device->backlight, freed by acpi_video_dev_unregister_backlight() during device removal. If the work executes after acpi_video_bus_unregister_backlight() frees these resources, it causes a use-after-free when acpi_video_switch_brightness() dereferences device->brightness or device->backlight. Fix this by calling cancel_delayed_work_sync() for each device's switch_brightness_work in acpi_video_bus_remove_notify_handler() after removing the notify handler that queues the work. This ensures the work completes before the memory is freed. [ rjw: Changelog edit ]
Затронутые продукты
Ссылки
- CVE-2025-40211
- SUSE Bug 1254126
Описание
In the Linux kernel, the following vulnerability has been resolved: nfsd: fix refcount leak in nfsd_set_fh_dentry() nfsd exports a "pseudo root filesystem" which is used by NFSv4 to find the various exported filesystems using LOOKUP requests from a known root filehandle. NFSv3 uses the MOUNT protocol to find those exported filesystems and so is not given access to the pseudo root filesystem. If a v3 (or v2) client uses a filehandle from that filesystem, nfsd_set_fh_dentry() will report an error, but still stores the export in "struct svc_fh" even though it also drops the reference (exp_put()). This means that when fh_put() is called an extra reference will be dropped which can lead to use-after-free and possible denial of service. Normal NFS usage will not provide a pseudo-root filehandle to a v3 client. This bug can only be triggered by the client synthesising an incorrect filehandle. To fix this we move the assignments to the svc_fh later, after all possible error cases have been detected.
Затронутые продукты
Ссылки
- CVE-2025-40212
- SUSE Bug 1254195
Описание
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: fix crash in set_mesh_sync and set_mesh_complete There is a BUG: KASAN: stack-out-of-bounds in set_mesh_sync due to memcpy from badly declared on-stack flexible array. Another crash is in set_mesh_complete() due to double list_del via mgmt_pending_valid + mgmt_pending_remove. Use DEFINE_FLEX to declare the flexible array right, and don't memcpy outside bounds. As mgmt_pending_valid removes the cmd from list, use mgmt_pending_free, and also report status on error.
Затронутые продукты
Ссылки
- CVE-2025-40213
- SUSE Bug 1253674
Описание
In the Linux kernel, the following vulnerability has been resolved: af_unix: Initialise scc_index in unix_add_edge(). Quang Le reported that the AF_UNIX GC could garbage-collect a receive queue of an alive in-flight socket, with a nice repro. The repro consists of three stages. 1) 1-a. Create a single cyclic reference with many sockets 1-b. close() all sockets 1-c. Trigger GC 2) 2-a. Pass sk-A to an embryo sk-B 2-b. Pass sk-X to sk-X 2-c. Trigger GC 3) 3-a. accept() the embryo sk-B 3-b. Pass sk-B to sk-C 3-c. close() the in-flight sk-A 3-d. Trigger GC As of 2-c, sk-A and sk-X are linked to unix_unvisited_vertices, and unix_walk_scc() groups them into two different SCCs: unix_sk(sk-A)->vertex->scc_index = 2 (UNIX_VERTEX_INDEX_START) unix_sk(sk-X)->vertex->scc_index = 3 Once GC completes, unix_graph_grouped is set to true. Also, unix_graph_maybe_cyclic is set to true due to sk-X's cyclic self-reference, which makes close() trigger GC. At 3-b, unix_add_edge() allocates unix_sk(sk-B)->vertex and links it to unix_unvisited_vertices. unix_update_graph() is called at 3-a. and 3-b., but neither unix_graph_grouped nor unix_graph_maybe_cyclic is changed because both sk-B's listener and sk-C are not in-flight. 3-c decrements sk-A's file refcnt to 1. Since unix_graph_grouped is true at 3-d, unix_walk_scc_fast() is finally called and iterates 3 sockets sk-A, sk-B, and sk-X: sk-A -> sk-B (-> sk-C) sk-X -> sk-X This is totally fine. All of them are not yet close()d and should be grouped into different SCCs. However, unix_vertex_dead() misjudges that sk-A and sk-B are in the same SCC and sk-A is dead. unix_sk(sk-A)->scc_index == unix_sk(sk-B)->scc_index <-- Wrong! && sk-A's file refcnt == unix_sk(sk-A)->vertex->out_degree ^-- 1 in-flight count for sk-B -> sk-A is dead !? The problem is that unix_add_edge() does not initialise scc_index. Stage 1) is used for heap spraying, making a newly allocated vertex have vertex->scc_index == 2 (UNIX_VERTEX_INDEX_START) set by unix_walk_scc() at 1-c. Let's track the max SCC index from the previous unix_walk_scc() call and assign the max + 1 to a new vertex's scc_index. This way, we can continue to avoid Tarjan's algorithm while preventing misjudgments.
Затронутые продукты
Ссылки
- CVE-2025-40214
- SUSE Bug 1254961
- SUSE Bug 1255052
Описание
In the Linux kernel, the following vulnerability has been resolved: xfrm: delete x->tunnel as we delete x The ipcomp fallback tunnels currently get deleted (from the various lists and hashtables) as the last user state that needed that fallback is destroyed (not deleted). If a reference to that user state still exists, the fallback state will remain on the hashtables/lists, triggering the WARN in xfrm_state_fini. Because of those remaining references, the fix in commit f75a2804da39 ("xfrm: destroy xfrm_state synchronously on net exit path") is not complete. We recently fixed one such situation in TCP due to defered freeing of skbs (commit 9b6412e6979f ("tcp: drop secpath at the same time as we currently drop dst")). This can also happen due to IP reassembly: skbs with a secpath remain on the reassembly queue until netns destruction. If we can't guarantee that the queues are flushed by the time xfrm_state_fini runs, there may still be references to a (user) xfrm_state, preventing the timely deletion of the corresponding fallback state. Instead of chasing each instance of skbs holding a secpath one by one, this patch fixes the issue directly within xfrm, by deleting the fallback state as soon as the last user state depending on it has been deleted. Destruction will still happen when the final reference is dropped. A separate lockdep class for the fallback state is required since we're going to lock x->tunnel while x is locked.
Затронутые продукты
Ссылки
- CVE-2025-40215
- SUSE Bug 1254959
- SUSE Bug 1255054
Описание
In the Linux kernel, the following vulnerability has been resolved: mm/damon/vaddr: do not repeat pte_offset_map_lock() until success DAMON's virtual address space operation set implementation (vaddr) calls pte_offset_map_lock() inside the page table walk callback function. This is for reading and writing page table accessed bits. If pte_offset_map_lock() fails, it retries by returning the page table walk callback function with ACTION_AGAIN. pte_offset_map_lock() can continuously fail if the target is a pmd migration entry, though. Hence it could cause an infinite page table walk if the migration cannot be done until the page table walk is finished. This indeed caused a soft lockup when CPU hotplugging and DAMON were running in parallel. Avoid the infinite loop by simply not retrying the page table walk. DAMON is promising only a best-effort accuracy, so missing access to such pages is no problem.
Затронутые продукты
Ссылки
- CVE-2025-40218
- SUSE Bug 1254964
Описание
In the Linux kernel, the following vulnerability has been resolved: PCI/IOV: Add PCI rescan-remove locking when enabling/disabling SR-IOV Before disabling SR-IOV via config space accesses to the parent PF, sriov_disable() first removes the PCI devices representing the VFs. Since commit 9d16947b7583 ("PCI: Add global pci_lock_rescan_remove()") such removal operations are serialized against concurrent remove and rescan using the pci_rescan_remove_lock. No such locking was ever added in sriov_disable() however. In particular when commit 18f9e9d150fc ("PCI/IOV: Factor out sriov_add_vfs()") factored out the PCI device removal into sriov_del_vfs() there was still no locking around the pci_iov_remove_virtfn() calls. On s390 the lack of serialization in sriov_disable() may cause double remove and list corruption with the below (amended) trace being observed: PSW: 0704c00180000000 0000000c914e4b38 (klist_put+56) GPRS: 000003800313fb48 0000000000000000 0000000100000001 0000000000000001 00000000f9b520a8 0000000000000000 0000000000002fbd 00000000f4cc9480 0000000000000001 0000000000000000 0000000000000000 0000000180692828 00000000818e8000 000003800313fe2c 000003800313fb20 000003800313fad8 #0 [3800313fb20] device_del at c9158ad5c #1 [3800313fb88] pci_remove_bus_device at c915105ba #2 [3800313fbd0] pci_iov_remove_virtfn at c9152f198 #3 [3800313fc28] zpci_iov_remove_virtfn at c90fb67c0 #4 [3800313fc60] zpci_bus_remove_device at c90fb6104 #5 [3800313fca0] __zpci_event_availability at c90fb3dca #6 [3800313fd08] chsc_process_sei_nt0 at c918fe4a2 #7 [3800313fd60] crw_collect_info at c91905822 #8 [3800313fe10] kthread at c90feb390 #9 [3800313fe68] __ret_from_fork at c90f6aa64 #10 [3800313fe98] ret_from_fork at c9194f3f2. This is because in addition to sriov_disable() removing the VFs, the platform also generates hot-unplug events for the VFs. This being the reverse operation to the hotplug events generated by sriov_enable() and handled via pdev->no_vf_scan. And while the event processing takes pci_rescan_remove_lock and checks whether the struct pci_dev still exists, the lack of synchronization makes this checking racy. Other races may also be possible of course though given that this lack of locking persisted so long observable races seem very rare. Even on s390 the list corruption was only observed with certain devices since the platform events are only triggered by config accesses after the removal, so as long as the removal finished synchronously they would not race. Either way the locking is missing so fix this by adding it to the sriov_del_vfs() helper. Just like PCI rescan-remove, locking is also missing in sriov_add_vfs() including for the error case where pci_stop_and_remove_bus_device() is called without the PCI rescan-remove lock being held. Even in the non-error case, adding new PCI devices and buses should be serialized via the PCI rescan-remove lock. Add the necessary locking.
Затронутые продукты
Ссылки
- CVE-2025-40219
- SUSE Bug 1254518
Описание
In the Linux kernel, the following vulnerability has been resolved: fuse: fix livelock in synchronous file put from fuseblk workers I observed a hang when running generic/323 against a fuseblk server. This test opens a file, initiates a lot of AIO writes to that file descriptor, and closes the file descriptor before the writes complete. Unsurprisingly, the AIO exerciser threads are mostly stuck waiting for responses from the fuseblk server: # cat /proc/372265/task/372313/stack [<0>] request_wait_answer+0x1fe/0x2a0 [fuse] [<0>] __fuse_simple_request+0xd3/0x2b0 [fuse] [<0>] fuse_do_getattr+0xfc/0x1f0 [fuse] [<0>] fuse_file_read_iter+0xbe/0x1c0 [fuse] [<0>] aio_read+0x130/0x1e0 [<0>] io_submit_one+0x542/0x860 [<0>] __x64_sys_io_submit+0x98/0x1a0 [<0>] do_syscall_64+0x37/0xf0 [<0>] entry_SYSCALL_64_after_hwframe+0x4b/0x53 But the /weird/ part is that the fuseblk server threads are waiting for responses from itself: # cat /proc/372210/task/372232/stack [<0>] request_wait_answer+0x1fe/0x2a0 [fuse] [<0>] __fuse_simple_request+0xd3/0x2b0 [fuse] [<0>] fuse_file_put+0x9a/0xd0 [fuse] [<0>] fuse_release+0x36/0x50 [fuse] [<0>] __fput+0xec/0x2b0 [<0>] task_work_run+0x55/0x90 [<0>] syscall_exit_to_user_mode+0xe9/0x100 [<0>] do_syscall_64+0x43/0xf0 [<0>] entry_SYSCALL_64_after_hwframe+0x4b/0x53 The fuseblk server is fuse2fs so there's nothing all that exciting in the server itself. So why is the fuse server calling fuse_file_put? The commit message for the fstest sheds some light on that: "By closing the file descriptor before calling io_destroy, you pretty much guarantee that the last put on the ioctx will be done in interrupt context (during I/O completion). Aha. AIO fgets a new struct file from the fd when it queues the ioctx. The completion of the FUSE_WRITE command from userspace causes the fuse server to call the AIO completion function. The completion puts the struct file, queuing a delayed fput to the fuse server task. When the fuse server task returns to userspace, it has to run the delayed fput, which in the case of a fuseblk server, it does synchronously. Sending the FUSE_RELEASE command sychronously from fuse server threads is a bad idea because a client program can initiate enough simultaneous AIOs such that all the fuse server threads end up in delayed_fput, and now there aren't any threads left to handle the queued fuse commands. Fix this by only using asynchronous fputs when closing files, and leave a comment explaining why.
Затронутые продукты
Ссылки
- CVE-2025-40220
- SUSE Bug 1254520
Описание
In the Linux kernel, the following vulnerability has been resolved: media: pci: mg4b: fix uninitialized iio scan data Fix potential leak of uninitialized stack data to userspace by ensuring that the `scan` structure is zeroed before use.
Затронутые продукты
Ссылки
- CVE-2025-40221
- SUSE Bug 1254519
Описание
In the Linux kernel, the following vulnerability has been resolved: most: usb: Fix use-after-free in hdm_disconnect hdm_disconnect() calls most_deregister_interface(), which eventually unregisters the MOST interface device with device_unregister(iface->dev). If that drops the last reference, the device core may call release_mdev() immediately while hdm_disconnect() is still executing. The old code also freed several mdev-owned allocations in hdm_disconnect() and then performed additional put_device() calls. Depending on refcount order, this could lead to use-after-free or double-free when release_mdev() ran (or when unregister paths also performed puts). Fix by moving the frees of mdev-owned allocations into release_mdev(), so they happen exactly once when the device is truly released, and by dropping the extra put_device() calls in hdm_disconnect() that are redundant after device_unregister() and most_deregister_interface(). This addresses the KASAN slab-use-after-free reported by syzbot in hdm_disconnect(). See report and stack traces in the bug link below.
Затронутые продукты
Ссылки
- CVE-2025-40223
- SUSE Bug 1254957
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/panthor: Fix kernel panic on partial unmap of a GPU VA region This commit address a kernel panic issue that can happen if Userspace tries to partially unmap a GPU virtual region (aka drm_gpuva). The VM_BIND interface allows partial unmapping of a BO. Panthor driver pre-allocates memory for the new drm_gpuva structures that would be needed for the map/unmap operation, done using drm_gpuvm layer. It expected that only one new drm_gpuva would be needed on umap but a partial unmap can require 2 new drm_gpuva and that's why it ended up doing a NULL pointer dereference causing a kernel panic. Following dump was seen when partial unmap was exercised. Unable to handle kernel NULL pointer dereference at virtual address 0000000000000078 Mem abort info: ESR = 0x0000000096000046 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x06: level 2 translation fault Data abort info: ISV = 0, ISS = 0x00000046, ISS2 = 0x00000000 CM = 0, WnR = 1, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=000000088a863000 [000000000000078] pgd=080000088a842003, p4d=080000088a842003, pud=0800000884bf5003, pmd=0000000000000000 Internal error: Oops: 0000000096000046 [#1] PREEMPT SMP <snip> pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : panthor_gpuva_sm_step_remap+0xe4/0x330 [panthor] lr : panthor_gpuva_sm_step_remap+0x6c/0x330 [panthor] sp : ffff800085d43970 x29: ffff800085d43970 x28: ffff00080363e440 x27: ffff0008090c6000 x26: 0000000000000030 x25: ffff800085d439f8 x24: ffff00080d402000 x23: ffff800085d43b60 x22: ffff800085d439e0 x21: ffff00080abdb180 x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000010 x17: 6e656c202c303030 x16: 3666666666646466 x15: 393d61766f69202c x14: 312d3d7361203a70 x13: 303030323d6e656c x12: ffff80008324bf58 x11: 0000000000000003 x10: 0000000000000002 x9 : ffff8000801a6a9c x8 : ffff00080360b300 x7 : 0000000000000000 x6 : 000000088aa35fc7 x5 : fff1000080000000 x4 : ffff8000842ddd30 x3 : 0000000000000001 x2 : 0000000100000000 x1 : 0000000000000001 x0 : 0000000000000078 Call trace: panthor_gpuva_sm_step_remap+0xe4/0x330 [panthor] op_remap_cb.isra.22+0x50/0x80 __drm_gpuvm_sm_unmap+0x10c/0x1c8 drm_gpuvm_sm_unmap+0x40/0x60 panthor_vm_exec_op+0xb4/0x3d0 [panthor] panthor_vm_bind_exec_sync_op+0x154/0x278 [panthor] panthor_ioctl_vm_bind+0x160/0x4a0 [panthor] drm_ioctl_kernel+0xbc/0x138 drm_ioctl+0x240/0x500 __arm64_sys_ioctl+0xb0/0xf8 invoke_syscall+0x4c/0x110 el0_svc_common.constprop.1+0x98/0xf8 do_el0_svc+0x24/0x38 el0_svc+0x40/0xf8 el0t_64_sync_handler+0xa0/0xc8 el0t_64_sync+0x174/0x178
Затронутые продукты
Ссылки
- CVE-2025-40225
- SUSE Bug 1254827
Описание
In the Linux kernel, the following vulnerability has been resolved: firmware: arm_scmi: Account for failed debug initialization When the SCMI debug subsystem fails to initialize, the related debug root will be missing, and the underlying descriptor will be NULL. Handle this fault condition in the SCMI debug helpers that maintain metrics counters.
Затронутые продукты
Ссылки
- CVE-2025-40226
- SUSE Bug 1254821
Описание
In the Linux kernel, the following vulnerability has been resolved: vsock: fix lock inversion in vsock_assign_transport() Syzbot reported a potential lock inversion deadlock between vsock_register_mutex and sk_lock-AF_VSOCK when vsock_linger() is called. The issue was introduced by commit 687aa0c5581b ("vsock: Fix transport_* TOCTOU") which added vsock_register_mutex locking in vsock_assign_transport() around the transport->release() call, that can call vsock_linger(). vsock_assign_transport() can be called with sk_lock held. vsock_linger() calls sk_wait_event() that temporarily releases and re-acquires sk_lock. During this window, if another thread hold vsock_register_mutex while trying to acquire sk_lock, a circular dependency is created. Fix this by releasing vsock_register_mutex before calling transport->release() and vsock_deassign_transport(). This is safe because we don't need to hold vsock_register_mutex while releasing the old transport, and we ensure the new transport won't disappear by obtaining a module reference first via try_module_get().
Затронутые продукты
Ссылки
- CVE-2025-40231
- SUSE Bug 1254815
Описание
In the Linux kernel, the following vulnerability has been resolved: ocfs2: clear extent cache after moving/defragmenting extents The extent map cache can become stale when extents are moved or defragmented, causing subsequent operations to see outdated extent flags. This triggers a BUG_ON in ocfs2_refcount_cal_cow_clusters(). The problem occurs when: 1. copy_file_range() creates a reflinked extent with OCFS2_EXT_REFCOUNTED 2. ioctl(FITRIM) triggers ocfs2_move_extents() 3. __ocfs2_move_extents_range() reads and caches the extent (flags=0x2) 4. ocfs2_move_extent()/ocfs2_defrag_extent() calls __ocfs2_move_extent() which clears OCFS2_EXT_REFCOUNTED flag on disk (flags=0x0) 5. The extent map cache is not invalidated after the move 6. Later write() operations read stale cached flags (0x2) but disk has updated flags (0x0), causing a mismatch 7. BUG_ON(!(rec->e_flags & OCFS2_EXT_REFCOUNTED)) triggers Fix by clearing the extent map cache after each extent move/defrag operation in __ocfs2_move_extents_range(). This ensures subsequent operations read fresh extent data from disk.
Затронутые продукты
Ссылки
- CVE-2025-40233
- SUSE Bug 1254813
Описание
In the Linux kernel, the following vulnerability has been resolved: btrfs: directly free partially initialized fs_info in btrfs_check_leaked_roots() If fs_info->super_copy or fs_info->super_for_commit allocated failed in btrfs_get_tree_subvol(), then no need to call btrfs_free_fs_info(). Otherwise btrfs_check_leaked_roots() would access NULL pointer because fs_info->allocated_roots had not been initialised. syzkaller reported the following information: ------------[ cut here ]------------ BUG: unable to handle page fault for address: fffffffffffffbb0 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 64c9067 P4D 64c9067 PUD 64cb067 PMD 0 Oops: Oops: 0000 [#1] SMP KASAN PTI CPU: 0 UID: 0 PID: 1402 Comm: syz.1.35 Not tainted 6.15.8 #4 PREEMPT(lazy) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), (...) RIP: 0010:arch_atomic_read arch/x86/include/asm/atomic.h:23 [inline] RIP: 0010:raw_atomic_read include/linux/atomic/atomic-arch-fallback.h:457 [inline] RIP: 0010:atomic_read include/linux/atomic/atomic-instrumented.h:33 [inline] RIP: 0010:refcount_read include/linux/refcount.h:170 [inline] RIP: 0010:btrfs_check_leaked_roots+0x18f/0x2c0 fs/btrfs/disk-io.c:1230 [...] Call Trace: <TASK> btrfs_free_fs_info+0x310/0x410 fs/btrfs/disk-io.c:1280 btrfs_get_tree_subvol+0x592/0x6b0 fs/btrfs/super.c:2029 btrfs_get_tree+0x63/0x80 fs/btrfs/super.c:2097 vfs_get_tree+0x98/0x320 fs/super.c:1759 do_new_mount+0x357/0x660 fs/namespace.c:3899 path_mount+0x716/0x19c0 fs/namespace.c:4226 do_mount fs/namespace.c:4239 [inline] __do_sys_mount fs/namespace.c:4450 [inline] __se_sys_mount fs/namespace.c:4427 [inline] __x64_sys_mount+0x28c/0x310 fs/namespace.c:4427 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0x92/0x180 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f032eaffa8d [...]
Затронутые продукты
Ссылки
- CVE-2025-40235
- SUSE Bug 1254808
Описание
In the Linux kernel, the following vulnerability has been resolved: fs/notify: call exportfs_encode_fid with s_umount Calling intotify_show_fdinfo() on fd watching an overlayfs inode, while the overlayfs is being unmounted, can lead to dereferencing NULL ptr. This issue was found by syzkaller. Race Condition Diagram: Thread 1 Thread 2 -------- -------- generic_shutdown_super() shrink_dcache_for_umount sb->s_root = NULL | | vfs_read() | inotify_fdinfo() | * inode get from mark * | show_mark_fhandle(m, inode) | exportfs_encode_fid(inode, ..) | ovl_encode_fh(inode, ..) | ovl_check_encode_origin(inode) | * deref i_sb->s_root * | | v fsnotify_sb_delete(sb) Which then leads to: [ 32.133461] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000006: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN NOPTI [ 32.134438] KASAN: null-ptr-deref in range [0x0000000000000030-0x0000000000000037] [ 32.135032] CPU: 1 UID: 0 PID: 4468 Comm: systemd-coredum Not tainted 6.17.0-rc6 #22 PREEMPT(none) <snip registers, unreliable trace> [ 32.143353] Call Trace: [ 32.143732] ovl_encode_fh+0xd5/0x170 [ 32.144031] exportfs_encode_inode_fh+0x12f/0x300 [ 32.144425] show_mark_fhandle+0xbe/0x1f0 [ 32.145805] inotify_fdinfo+0x226/0x2d0 [ 32.146442] inotify_show_fdinfo+0x1c5/0x350 [ 32.147168] seq_show+0x530/0x6f0 [ 32.147449] seq_read_iter+0x503/0x12a0 [ 32.148419] seq_read+0x31f/0x410 [ 32.150714] vfs_read+0x1f0/0x9e0 [ 32.152297] ksys_read+0x125/0x240 IOW ovl_check_encode_origin derefs inode->i_sb->s_root, after it was set to NULL in the unmount path. Fix it by protecting calling exportfs_encode_fid() from show_mark_fhandle() with s_umount lock. This form of fix was suggested by Amir in [1]. [1]: https://lore.kernel.org/all/CAOQ4uxhbDwhb+2Brs1UdkoF0a3NSdBAOQPNfEHjahrgoKJpLEw@mail.gmail.com/
Затронутые продукты
Ссылки
- CVE-2025-40237
- SUSE Bug 1254809
Описание
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix IPsec cleanup over MPV device When we do mlx5e_detach_netdev() we eventually disable blocking events notifier, among those events are IPsec MPV events from IB to core. So before disabling those blocking events, make sure to also unregister the devcom device and mark all this device operations as complete, in order to prevent the other device from using invalid netdev during future devcom events which could cause the trace below. BUG: kernel NULL pointer dereference, address: 0000000000000010 PGD 146427067 P4D 146427067 PUD 146488067 PMD 0 Oops: Oops: 0000 [#1] SMP CPU: 1 UID: 0 PID: 7735 Comm: devlink Tainted: GW 6.12.0-rc6_for_upstream_min_debug_2024_11_08_00_46 #1 Tainted: [W]=WARN Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:mlx5_devcom_comp_set_ready+0x5/0x40 [mlx5_core] Code: 00 01 48 83 05 23 32 1e 00 01 41 b8 ed ff ff ff e9 60 ff ff ff 48 83 05 00 32 1e 00 01 eb e3 66 0f 1f 44 00 00 0f 1f 44 00 00 <48> 8b 47 10 48 83 05 5f 32 1e 00 01 48 8b 50 40 48 85 d2 74 05 40 RSP: 0018:ffff88811a5c35f8 EFLAGS: 00010206 RAX: ffff888106e8ab80 RBX: ffff888107d7e200 RCX: ffff88810d6f0a00 RDX: ffff88810d6f0a00 RSI: 0000000000000001 RDI: 0000000000000000 RBP: ffff88811a17e620 R08: 0000000000000040 R09: 0000000000000000 R10: ffff88811a5c3618 R11: 0000000de85d51bd R12: ffff88811a17e600 R13: ffff88810d6f0a00 R14: 0000000000000000 R15: ffff8881034bda80 FS: 00007f27bdf89180(0000) GS:ffff88852c880000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000010 CR3: 000000010f159005 CR4: 0000000000372eb0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? __die+0x20/0x60 ? page_fault_oops+0x150/0x3e0 ? exc_page_fault+0x74/0x130 ? asm_exc_page_fault+0x22/0x30 ? mlx5_devcom_comp_set_ready+0x5/0x40 [mlx5_core] mlx5e_devcom_event_mpv+0x42/0x60 [mlx5_core] mlx5_devcom_send_event+0x8c/0x170 [mlx5_core] blocking_event+0x17b/0x230 [mlx5_core] notifier_call_chain+0x35/0xa0 blocking_notifier_call_chain+0x3d/0x60 mlx5_blocking_notifier_call_chain+0x22/0x30 [mlx5_core] mlx5_core_mp_event_replay+0x12/0x20 [mlx5_core] mlx5_ib_bind_slave_port+0x228/0x2c0 [mlx5_ib] mlx5_ib_stage_init_init+0x664/0x9d0 [mlx5_ib] ? idr_alloc_cyclic+0x50/0xb0 ? __kmalloc_cache_noprof+0x167/0x340 ? __kmalloc_noprof+0x1a7/0x430 __mlx5_ib_add+0x34/0xd0 [mlx5_ib] mlx5r_probe+0xe9/0x310 [mlx5_ib] ? kernfs_add_one+0x107/0x150 ? __mlx5_ib_add+0xd0/0xd0 [mlx5_ib] auxiliary_bus_probe+0x3e/0x90 really_probe+0xc5/0x3a0 ? driver_probe_device+0x90/0x90 __driver_probe_device+0x80/0x160 driver_probe_device+0x1e/0x90 __device_attach_driver+0x7d/0x100 bus_for_each_drv+0x80/0xd0 __device_attach+0xbc/0x1f0 bus_probe_device+0x86/0xa0 device_add+0x62d/0x830 __auxiliary_device_add+0x3b/0xa0 ? auxiliary_device_init+0x41/0x90 add_adev+0xd1/0x150 [mlx5_core] mlx5_rescan_drivers_locked+0x21c/0x300 [mlx5_core] esw_mode_change+0x6c/0xc0 [mlx5_core] mlx5_devlink_eswitch_mode_set+0x21e/0x640 [mlx5_core] devlink_nl_eswitch_set_doit+0x60/0xe0 genl_family_rcv_msg_doit+0xd0/0x120 genl_rcv_msg+0x180/0x2b0 ? devlink_get_from_attrs_lock+0x170/0x170 ? devlink_nl_eswitch_get_doit+0x290/0x290 ? devlink_nl_pre_doit_port_optional+0x50/0x50 ? genl_family_rcv_msg_dumpit+0xf0/0xf0 netlink_rcv_skb+0x54/0x100 genl_rcv+0x24/0x40 netlink_unicast+0x1fc/0x2d0 netlink_sendmsg+0x1e4/0x410 __sock_sendmsg+0x38/0x60 ? sockfd_lookup_light+0x12/0x60 __sys_sendto+0x105/0x160 ? __sys_recvmsg+0x4e/0x90 __x64_sys_sendto+0x20/0x30 do_syscall_64+0x4c/0x100 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7f27bc91b13a Code: bb 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 8b 05 fa 96 2c 00 45 89 c9 4c 63 d1 48 63 ff 85 c0 75 15 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff ---truncated---
Затронутые продукты
Ссылки
- CVE-2025-40238
- SUSE Bug 1254871
Описание
In the Linux kernel, the following vulnerability has been resolved: net: phy: micrel: always set shared->phydev for LAN8814 Currently, during the LAN8814 PTP probe shared->phydev is only set if PTP clock gets actually set, otherwise the function will return before setting it. This is an issue as shared->phydev is unconditionally being used when IRQ is being handled, especially in lan8814_gpio_process_cap and since it was not set it will cause a NULL pointer exception and crash the kernel. So, simply always set shared->phydev to avoid the NULL pointer exception.
Затронутые продукты
Ссылки
- CVE-2025-40239
- SUSE Bug 1254868
Описание
In the Linux kernel, the following vulnerability has been resolved: sctp: avoid NULL dereference when chunk data buffer is missing chunk->skb pointer is dereferenced in the if-block where it's supposed to be NULL only. chunk->skb can only be NULL if chunk->head_skb is not. Check for frag_list instead and do it just before replacing chunk->skb. We're sure that otherwise chunk->skb is non-NULL because of outer if() condition.
Затронутые продукты
Ссылки
- CVE-2025-40240
- SUSE Bug 1254869
Описание
In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix unlikely race in gdlm_put_lock In gdlm_put_lock(), there is a small window of time in which the DFL_UNMOUNT flag has been set but the lockspace hasn't been released, yet. In that window, dlm may still call gdlm_ast() and gdlm_bast(). To prevent it from dereferencing freed glock objects, only free the glock if the lockspace has actually been released.
Затронутые продукты
Ссылки
- CVE-2025-40242
- SUSE Bug 1255075
- SUSE Bug 1255076
Описание
In the Linux kernel, the following vulnerability has been resolved: xfs: fix out of bounds memory read error in symlink repair xfs/286 produced this report on my test fleet: ================================================================== BUG: KFENCE: out-of-bounds read in memcpy_orig+0x54/0x110 Out-of-bounds read at 0xffff88843fe9e038 (184B right of kfence-#184): memcpy_orig+0x54/0x110 xrep_symlink_salvage_inline+0xb3/0xf0 [xfs] xrep_symlink_salvage+0x100/0x110 [xfs] xrep_symlink+0x2e/0x80 [xfs] xrep_attempt+0x61/0x1f0 [xfs] xfs_scrub_metadata+0x34f/0x5c0 [xfs] xfs_ioc_scrubv_metadata+0x387/0x560 [xfs] xfs_file_ioctl+0xe23/0x10e0 [xfs] __x64_sys_ioctl+0x76/0xc0 do_syscall_64+0x4e/0x1e0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 kfence-#184: 0xffff88843fe9df80-0xffff88843fe9dfea, size=107, cache=kmalloc-128 allocated by task 3470 on cpu 1 at 263329.131592s (192823.508886s ago): xfs_init_local_fork+0x79/0xe0 [xfs] xfs_iformat_local+0xa4/0x170 [xfs] xfs_iformat_data_fork+0x148/0x180 [xfs] xfs_inode_from_disk+0x2cd/0x480 [xfs] xfs_iget+0x450/0xd60 [xfs] xfs_bulkstat_one_int+0x6b/0x510 [xfs] xfs_bulkstat_iwalk+0x1e/0x30 [xfs] xfs_iwalk_ag_recs+0xdf/0x150 [xfs] xfs_iwalk_run_callbacks+0xb9/0x190 [xfs] xfs_iwalk_ag+0x1dc/0x2f0 [xfs] xfs_iwalk_args.constprop.0+0x6a/0x120 [xfs] xfs_iwalk+0xa4/0xd0 [xfs] xfs_bulkstat+0xfa/0x170 [xfs] xfs_ioc_fsbulkstat.isra.0+0x13a/0x230 [xfs] xfs_file_ioctl+0xbf2/0x10e0 [xfs] __x64_sys_ioctl+0x76/0xc0 do_syscall_64+0x4e/0x1e0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 CPU: 1 UID: 0 PID: 1300113 Comm: xfs_scrub Not tainted 6.18.0-rc4-djwx #rc4 PREEMPT(lazy) 3d744dd94e92690f00a04398d2bd8631dcef1954 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-4.module+el8.8.0+21164+ed375313 04/01/2014 ================================================================== On further analysis, I realized that the second parameter to min() is not correct. xfs_ifork::if_bytes is the size of the xfs_ifork::if_data buffer. if_bytes can be smaller than the data fork size because: (a) the forkoff code tries to keep the data area as large as possible (b) for symbolic links, if_bytes is the ondisk file size + 1 (c) forkoff is always a multiple of 8. Case in point: for a single-byte symlink target, forkoff will be 8 but the buffer will only be 2 bytes long. In other words, the logic here is wrong and we walk off the end of the incore buffer. Fix that.
Затронутые продукты
Ссылки
- CVE-2025-40246
- SUSE Bug 1254861
Описание
In the Linux kernel, the following vulnerability has been resolved: vsock: Ignore signal/timeout on connect() if already established During connect(), acting on a signal/timeout by disconnecting an already established socket leads to several issues: 1. connect() invoking vsock_transport_cancel_pkt() -> virtio_transport_purge_skbs() may race with sendmsg() invoking virtio_transport_get_credit(). This results in a permanently elevated `vvs->bytes_unsent`. Which, in turn, confuses the SOCK_LINGER handling. 2. connect() resetting a connected socket's state may race with socket being placed in a sockmap. A disconnected socket remaining in a sockmap breaks sockmap's assumptions. And gives rise to WARNs. 3. connect() transitioning SS_CONNECTED -> SS_UNCONNECTED allows for a transport change/drop after TCP_ESTABLISHED. Which poses a problem for any simultaneous sendmsg() or connect() and may result in a use-after-free/null-ptr-deref. Do not disconnect socket on signal/timeout. Keep the logic for unconnected sockets: they don't linger, can't be placed in a sockmap, are rejected by sendmsg(). [1]: https://lore.kernel.org/netdev/e07fd95c-9a38-4eea-9638-133e38c2ec9b@rbox.co/ [2]: https://lore.kernel.org/netdev/20250317-vsock-trans-signal-race-v4-0-fc8837f3f1d4@rbox.co/ [3]: https://lore.kernel.org/netdev/60f1b7db-3099-4f6a-875e-af9f6ef194f6@rbox.co/
Затронутые продукты
Ссылки
- CVE-2025-40248
- SUSE Bug 1254864
Описание
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Clean up only new IRQ glue on request_irq() failure The mlx5_irq_alloc() function can inadvertently free the entire rmap and end up in a crash[1] when the other threads tries to access this, when request_irq() fails due to exhausted IRQ vectors. This commit modifies the cleanup to remove only the specific IRQ mapping that was just added. This prevents removal of other valid mappings and ensures precise cleanup of the failed IRQ allocation's associated glue object. Note: This error is observed when both fwctl and rds configs are enabled. [1] mlx5_core 0000:05:00.0: Successfully registered panic handler for port 1 mlx5_core 0000:05:00.0: mlx5_irq_alloc:293:(pid 66740): Failed to request irq. err = -28 infiniband mlx5_0: mlx5_ib_test_wc:290:(pid 66740): Error -28 while trying to test write-combining support mlx5_core 0000:05:00.0: Successfully unregistered panic handler for port 1 mlx5_core 0000:06:00.0: Successfully registered panic handler for port 1 mlx5_core 0000:06:00.0: mlx5_irq_alloc:293:(pid 66740): Failed to request irq. err = -28 infiniband mlx5_0: mlx5_ib_test_wc:290:(pid 66740): Error -28 while trying to test write-combining support mlx5_core 0000:06:00.0: Successfully unregistered panic handler for port 1 mlx5_core 0000:03:00.0: mlx5_irq_alloc:293:(pid 28895): Failed to request irq. err = -28 mlx5_core 0000:05:00.0: mlx5_irq_alloc:293:(pid 28895): Failed to request irq. err = -28 general protection fault, probably for non-canonical address 0xe277a58fde16f291: 0000 [#1] SMP NOPTI RIP: 0010:free_irq_cpu_rmap+0x23/0x7d Call Trace: <TASK> ? show_trace_log_lvl+0x1d6/0x2f9 ? show_trace_log_lvl+0x1d6/0x2f9 ? mlx5_irq_alloc.cold+0x5d/0xf3 [mlx5_core] ? __die_body.cold+0x8/0xa ? die_addr+0x39/0x53 ? exc_general_protection+0x1c4/0x3e9 ? dev_vprintk_emit+0x5f/0x90 ? asm_exc_general_protection+0x22/0x27 ? free_irq_cpu_rmap+0x23/0x7d mlx5_irq_alloc.cold+0x5d/0xf3 [mlx5_core] irq_pool_request_vector+0x7d/0x90 [mlx5_core] mlx5_irq_request+0x2e/0xe0 [mlx5_core] mlx5_irq_request_vector+0xad/0xf7 [mlx5_core] comp_irq_request_pci+0x64/0xf0 [mlx5_core] create_comp_eq+0x71/0x385 [mlx5_core] ? mlx5e_open_xdpsq+0x11c/0x230 [mlx5_core] mlx5_comp_eqn_get+0x72/0x90 [mlx5_core] ? xas_load+0x8/0x91 mlx5_comp_irqn_get+0x40/0x90 [mlx5_core] mlx5e_open_channel+0x7d/0x3c7 [mlx5_core] mlx5e_open_channels+0xad/0x250 [mlx5_core] mlx5e_open_locked+0x3e/0x110 [mlx5_core] mlx5e_open+0x23/0x70 [mlx5_core] __dev_open+0xf1/0x1a5 __dev_change_flags+0x1e1/0x249 dev_change_flags+0x21/0x5c do_setlink+0x28b/0xcc4 ? __nla_parse+0x22/0x3d ? inet6_validate_link_af+0x6b/0x108 ? cpumask_next+0x1f/0x35 ? __snmp6_fill_stats64.constprop.0+0x66/0x107 ? __nla_validate_parse+0x48/0x1e6 __rtnl_newlink+0x5ff/0xa57 ? kmem_cache_alloc_trace+0x164/0x2ce rtnl_newlink+0x44/0x6e rtnetlink_rcv_msg+0x2bb/0x362 ? __netlink_sendskb+0x4c/0x6c ? netlink_unicast+0x28f/0x2ce ? rtnl_calcit.isra.0+0x150/0x146 netlink_rcv_skb+0x5f/0x112 netlink_unicast+0x213/0x2ce netlink_sendmsg+0x24f/0x4d9 __sock_sendmsg+0x65/0x6a ____sys_sendmsg+0x28f/0x2c9 ? import_iovec+0x17/0x2b ___sys_sendmsg+0x97/0xe0 __sys_sendmsg+0x81/0xd8 do_syscall_64+0x35/0x87 entry_SYSCALL_64_after_hwframe+0x6e/0x0 RIP: 0033:0x7fc328603727 Code: c3 66 90 41 54 41 89 d4 55 48 89 f5 53 89 fb 48 83 ec 10 e8 0b ed ff ff 44 89 e2 48 89 ee 89 df 41 89 c0 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 35 44 89 c7 48 89 44 24 08 e8 44 ed ff ff 48 RSP: 002b:00007ffe8eb3f1a0 EFLAGS: 00000293 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007fc328603727 RDX: 0000000000000000 RSI: 00007ffe8eb3f1f0 RDI: 000000000000000d RBP: 00007ffe8eb3f1f0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000293 R12: 0000000000000000 R13: 00000000000 ---truncated---
Затронутые продукты
Ссылки
- CVE-2025-40250
- SUSE Bug 1254854
Описание
In the Linux kernel, the following vulnerability has been resolved: devlink: rate: Unset parent pointer in devl_rate_nodes_destroy The function devl_rate_nodes_destroy is documented to "Unset parent for all rate objects". However, it was only calling the driver-specific `rate_leaf_parent_set` or `rate_node_parent_set` ops and decrementing the parent's refcount, without actually setting the `devlink_rate->parent` pointer to NULL. This leaves a dangling pointer in the `devlink_rate` struct, which cause refcount error in netdevsim[1] and mlx5[2]. In addition, this is inconsistent with the behavior of `devlink_nl_rate_parent_node_set`, where the parent pointer is correctly cleared. This patch fixes the issue by explicitly setting `devlink_rate->parent` to NULL after notifying the driver, thus fulfilling the function's documented behavior for all rate objects. [1] repro steps: echo 1 > /sys/bus/netdevsim/new_device devlink dev eswitch set netdevsim/netdevsim1 mode switchdev echo 1 > /sys/bus/netdevsim/devices/netdevsim1/sriov_numvfs devlink port function rate add netdevsim/netdevsim1/test_node devlink port function rate set netdevsim/netdevsim1/128 parent test_node echo 1 > /sys/bus/netdevsim/del_device dmesg: refcount_t: decrement hit 0; leaking memory. WARNING: CPU: 8 PID: 1530 at lib/refcount.c:31 refcount_warn_saturate+0x42/0xe0 CPU: 8 UID: 0 PID: 1530 Comm: bash Not tainted 6.18.0-rc4+ #1 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:refcount_warn_saturate+0x42/0xe0 Call Trace: <TASK> devl_rate_leaf_destroy+0x8d/0x90 __nsim_dev_port_del+0x6c/0x70 [netdevsim] nsim_dev_reload_destroy+0x11c/0x140 [netdevsim] nsim_drv_remove+0x2b/0xb0 [netdevsim] device_release_driver_internal+0x194/0x1f0 bus_remove_device+0xc6/0x130 device_del+0x159/0x3c0 device_unregister+0x1a/0x60 del_device_store+0x111/0x170 [netdevsim] kernfs_fop_write_iter+0x12e/0x1e0 vfs_write+0x215/0x3d0 ksys_write+0x5f/0xd0 do_syscall_64+0x55/0x10f0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 [2] devlink dev eswitch set pci/0000:08:00.0 mode switchdev devlink port add pci/0000:08:00.0 flavour pcisf pfnum 0 sfnum 1000 devlink port function rate add pci/0000:08:00.0/group1 devlink port function rate set pci/0000:08:00.0/32768 parent group1 modprobe -r mlx5_ib mlx5_fwctl mlx5_core dmesg: refcount_t: decrement hit 0; leaking memory. WARNING: CPU: 7 PID: 16151 at lib/refcount.c:31 refcount_warn_saturate+0x42/0xe0 CPU: 7 UID: 0 PID: 16151 Comm: bash Not tainted 6.17.0-rc7_for_upstream_min_debug_2025_10_02_12_44 #1 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 RIP: 0010:refcount_warn_saturate+0x42/0xe0 Call Trace: <TASK> devl_rate_leaf_destroy+0x8d/0x90 mlx5_esw_offloads_devlink_port_unregister+0x33/0x60 [mlx5_core] mlx5_esw_offloads_unload_rep+0x3f/0x50 [mlx5_core] mlx5_eswitch_unload_sf_vport+0x40/0x90 [mlx5_core] mlx5_sf_esw_event+0xc4/0x120 [mlx5_core] notifier_call_chain+0x33/0xa0 blocking_notifier_call_chain+0x3b/0x50 mlx5_eswitch_disable_locked+0x50/0x110 [mlx5_core] mlx5_eswitch_disable+0x63/0x90 [mlx5_core] mlx5_unload+0x1d/0x170 [mlx5_core] mlx5_uninit_one+0xa2/0x130 [mlx5_core] remove_one+0x78/0xd0 [mlx5_core] pci_device_remove+0x39/0xa0 device_release_driver_internal+0x194/0x1f0 unbind_store+0x99/0xa0 kernfs_fop_write_iter+0x12e/0x1e0 vfs_write+0x215/0x3d0 ksys_write+0x5f/0xd0 do_syscall_64+0x53/0x1f0 entry_SYSCALL_64_after_hwframe+0x4b/0x53
Затронутые продукты
Ссылки
- CVE-2025-40251
- SUSE Bug 1254856
Описание
In the Linux kernel, the following vulnerability has been resolved: net: qlogic/qede: fix potential out-of-bounds read in qede_tpa_cont() and qede_tpa_end() The loops in 'qede_tpa_cont()' and 'qede_tpa_end()', iterate over 'cqe->len_list[]' using only a zero-length terminator as the stopping condition. If the terminator was missing or malformed, the loop could run past the end of the fixed-size array. Add an explicit bound check using ARRAY_SIZE() in both loops to prevent a potential out-of-bounds access. Found by Linux Verification Center (linuxtesting.org) with SVACE.
Затронутые продукты
Ссылки
- CVE-2025-40252
- SUSE Bug 1254849
Описание
In the Linux kernel, the following vulnerability has been resolved: net: openvswitch: remove never-working support for setting nsh fields The validation of the set(nsh(...)) action is completely wrong. It runs through the nsh_key_put_from_nlattr() function that is the same function that validates NSH keys for the flow match and the push_nsh() action. However, the set(nsh(...)) has a very different memory layout. Nested attributes in there are doubled in size in case of the masked set(). That makes proper validation impossible. There is also confusion in the code between the 'masked' flag, that says that the nested attributes are doubled in size containing both the value and the mask, and the 'is_mask' that says that the value we're parsing is the mask. This is causing kernel crash on trying to write into mask part of the match with SW_FLOW_KEY_PUT() during validation, while validate_nsh() doesn't allocate any memory for it: BUG: kernel NULL pointer dereference, address: 0000000000000018 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 1c2383067 P4D 1c2383067 PUD 20b703067 PMD 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 8 UID: 0 Kdump: loaded Not tainted 6.17.0-rc4+ #107 PREEMPT(voluntary) RIP: 0010:nsh_key_put_from_nlattr+0x19d/0x610 [openvswitch] Call Trace: <TASK> validate_nsh+0x60/0x90 [openvswitch] validate_set.constprop.0+0x270/0x3c0 [openvswitch] __ovs_nla_copy_actions+0x477/0x860 [openvswitch] ovs_nla_copy_actions+0x8d/0x100 [openvswitch] ovs_packet_cmd_execute+0x1cc/0x310 [openvswitch] genl_family_rcv_msg_doit+0xdb/0x130 genl_family_rcv_msg+0x14b/0x220 genl_rcv_msg+0x47/0xa0 netlink_rcv_skb+0x53/0x100 genl_rcv+0x24/0x40 netlink_unicast+0x280/0x3b0 netlink_sendmsg+0x1f7/0x430 ____sys_sendmsg+0x36b/0x3a0 ___sys_sendmsg+0x87/0xd0 __sys_sendmsg+0x6d/0xd0 do_syscall_64+0x7b/0x2c0 entry_SYSCALL_64_after_hwframe+0x76/0x7e The third issue with this process is that while trying to convert the non-masked set into masked one, validate_set() copies and doubles the size of the OVS_KEY_ATTR_NSH as if it didn't have any nested attributes. It should be copying each nested attribute and doubling them in size independently. And the process must be properly reversed during the conversion back from masked to a non-masked variant during the flow dump. In the end, the only two outcomes of trying to use this action are either validation failure or a kernel crash. And if somehow someone manages to install a flow with such an action, it will most definitely not do what it is supposed to, since all the keys and the masks are mixed up. Fixing all the issues is a complex task as it requires re-writing most of the validation code. Given that and the fact that this functionality never worked since introduction, let's just remove it altogether. It's better to re-introduce it later with a proper implementation instead of trying to fix it in stable releases.
Затронутые продукты
Ссылки
- CVE-2025-40254
- SUSE Bug 1254852
Описание
In the Linux kernel, the following vulnerability has been resolved: net: core: prevent NULL deref in generic_hwtstamp_ioctl_lower() The ethtool tsconfig Netlink path can trigger a null pointer dereference. A call chain such as: tsconfig_prepare_data() -> dev_get_hwtstamp_phylib() -> vlan_hwtstamp_get() -> generic_hwtstamp_get_lower() -> generic_hwtstamp_ioctl_lower() results in generic_hwtstamp_ioctl_lower() being called with kernel_cfg->ifr as NULL. The generic_hwtstamp_ioctl_lower() function does not expect a NULL ifr and dereferences it, leading to a system crash. Fix this by adding a NULL check for kernel_cfg->ifr in generic_hwtstamp_ioctl_lower(). If ifr is NULL, return -EINVAL.
Затронутые продукты
Ссылки
- CVE-2025-40255
- SUSE Bug 1255156
Описание
In the Linux kernel, the following vulnerability has been resolved: xfrm: also call xfrm_state_delete_tunnel at destroy time for states that were never added In commit b441cf3f8c4b ("xfrm: delete x->tunnel as we delete x"), I missed the case where state creation fails between full initialization (->init_state has been called) and being inserted on the lists. In this situation, ->init_state has been called, so for IPcomp tunnels, the fallback tunnel has been created and added onto the lists, but the user state never gets added, because we fail before that. The user state doesn't go through __xfrm_state_delete, so we don't call xfrm_state_delete_tunnel for those states, and we end up leaking the FB tunnel. There are several codepaths affected by this: the add/update paths, in both net/key and xfrm, and the migrate code (xfrm_migrate, xfrm_state_migrate). A "proper" rollback of the init_state work would probably be doable in the add/update code, but for migrate it gets more complicated as multiple states may be involved. At some point, the new (not-inserted) state will be destroyed, so call xfrm_state_delete_tunnel during xfrm_state_gc_destroy. Most states will have their fallback tunnel cleaned up during __xfrm_state_delete, which solves the issue that b441cf3f8c4b (and other patches before it) aimed at. All states (including FB tunnels) will be removed from the lists once xfrm_state_fini has called flush_work(&xfrm_state_gc_work).
Затронутые продукты
Ссылки
- CVE-2025-40256
- SUSE Bug 1254851
Описание
In the Linux kernel, the following vulnerability has been resolved: mptcp: fix race condition in mptcp_schedule_work() syzbot reported use-after-free in mptcp_schedule_work() [1] Issue here is that mptcp_schedule_work() schedules a work, then gets a refcount on sk->sk_refcnt if the work was scheduled. This refcount will be released by mptcp_worker(). [A] if (schedule_work(...)) { [B] sock_hold(sk); return true; } Problem is that mptcp_worker() can run immediately and complete before [B] We need instead : sock_hold(sk); if (schedule_work(...)) return true; sock_put(sk); [1] refcount_t: addition on 0; use-after-free. WARNING: CPU: 1 PID: 29 at lib/refcount.c:25 refcount_warn_saturate+0xfa/0x1d0 lib/refcount.c:25 Call Trace: <TASK> __refcount_add include/linux/refcount.h:-1 [inline] __refcount_inc include/linux/refcount.h:366 [inline] refcount_inc include/linux/refcount.h:383 [inline] sock_hold include/net/sock.h:816 [inline] mptcp_schedule_work+0x164/0x1a0 net/mptcp/protocol.c:943 mptcp_tout_timer+0x21/0xa0 net/mptcp/protocol.c:2316 call_timer_fn+0x17e/0x5f0 kernel/time/timer.c:1747 expire_timers kernel/time/timer.c:1798 [inline] __run_timers kernel/time/timer.c:2372 [inline] __run_timer_base+0x648/0x970 kernel/time/timer.c:2384 run_timer_base kernel/time/timer.c:2393 [inline] run_timer_softirq+0xb7/0x180 kernel/time/timer.c:2403 handle_softirqs+0x22f/0x710 kernel/softirq.c:622 __do_softirq kernel/softirq.c:656 [inline] run_ktimerd+0xcf/0x190 kernel/softirq.c:1138 smpboot_thread_fn+0x542/0xa60 kernel/smpboot.c:160 kthread+0x711/0x8a0 kernel/kthread.c:463 ret_from_fork+0x4bc/0x870 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
Затронутые продукты
Ссылки
- CVE-2025-40258
- SUSE Bug 1254843
- SUSE Bug 1255053
Описание
In the Linux kernel, the following vulnerability has been resolved: Input: imx_sc_key - fix memory corruption on unload This is supposed to be "priv" but we accidentally pass "&priv" which is an address in the stack and so it will lead to memory corruption when the imx_sc_key_action() function is called. Remove the &.
Затронутые продукты
Ссылки
- CVE-2025-40262
- SUSE Bug 1254840
Описание
In the Linux kernel, the following vulnerability has been resolved: Input: cros_ec_keyb - fix an invalid memory access If cros_ec_keyb_register_matrix() isn't called (due to `buttons_switches_only`) in cros_ec_keyb_probe(), `ckdev->idev` remains NULL. An invalid memory access is observed in cros_ec_keyb_process() when receiving an EC_MKBP_EVENT_KEY_MATRIX event in cros_ec_keyb_work() in such case. Unable to handle kernel read from unreadable memory at virtual address 0000000000000028 ... x3 : 0000000000000000 x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000 Call trace: input_event cros_ec_keyb_work blocking_notifier_call_chain ec_irq_thread It's still unknown about why the kernel receives such malformed event, in any cases, the kernel shouldn't access `ckdev->idev` and friends if the driver doesn't intend to initialize them.
Затронутые продукты
Ссылки
- CVE-2025-40263
- SUSE Bug 1255077
Описание
In the Linux kernel, the following vulnerability has been resolved: be2net: pass wrb_params in case of OS2BMC be_insert_vlan_in_pkt() is called with the wrb_params argument being NULL at be_send_pkt_to_bmc() call site. This may lead to dereferencing a NULL pointer when processing a workaround for specific packet, as commit bc0c3405abbb ("be2net: fix a Tx stall bug caused by a specific ipv6 packet") states. The correct way would be to pass the wrb_params from be_xmit().
Затронутые продукты
Ссылки
- CVE-2025-40264
- SUSE Bug 1254835
Описание
In the Linux kernel, the following vulnerability has been resolved: KVM: arm64: Check the untrusted offset in FF-A memory share Verify the offset to prevent OOB access in the hypervisor FF-A buffer in case an untrusted large enough value [U32_MAX - sizeof(struct ffa_composite_mem_region) + 1, U32_MAX] is set from the host kernel.
Затронутые продукты
Ссылки
- CVE-2025-40266
- SUSE Bug 1255040
Описание
In the Linux kernel, the following vulnerability has been resolved: cifs: client: fix memory leak in smb3_fs_context_parse_param The user calls fsconfig twice, but when the program exits, free() only frees ctx->source for the second fsconfig, not the first. Regarding fc->source, there is no code in the fs context related to its memory reclamation. To fix this memory leak, release the source memory corresponding to ctx or fc before each parsing. syzbot reported: BUG: memory leak unreferenced object 0xffff888128afa360 (size 96): backtrace (crc 79c9c7ba): kstrdup+0x3c/0x80 mm/util.c:84 smb3_fs_context_parse_param+0x229b/0x36c0 fs/smb/client/fs_context.c:1444 BUG: memory leak unreferenced object 0xffff888112c7d900 (size 96): backtrace (crc 79c9c7ba): smb3_fs_context_fullpath+0x70/0x1b0 fs/smb/client/fs_context.c:629 smb3_fs_context_parse_param+0x2266/0x36c0 fs/smb/client/fs_context.c:1438
Затронутые продукты
Ссылки
- CVE-2025-40268
- SUSE Bug 1255082
Описание
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Fix potential overflow of PCM transfer buffer The PCM stream data in USB-audio driver is transferred over USB URB packet buffers, and each packet size is determined dynamically. The packet sizes are limited by some factors such as wMaxPacketSize USB descriptor. OTOH, in the current code, the actually used packet sizes are determined only by the rate and the PPS, which may be bigger than the size limit above. This results in a buffer overflow, as reported by syzbot. Basically when the limit is smaller than the calculated packet size, it implies that something is wrong, most likely a weird USB descriptor. So the best option would be just to return an error at the parameter setup time before doing any further operations. This patch introduces such a sanity check, and returns -EINVAL when the packet size is greater than maxpacksize. The comparison with ep->packsize[1] alone should suffice since it's always equal or greater than ep->packsize[0].
Затронутые продукты
Ссылки
- CVE-2025-40269
- SUSE Bug 1255035
Описание
In the Linux kernel, the following vulnerability has been resolved: fs/proc: fix uaf in proc_readdir_de() Pde is erased from subdir rbtree through rb_erase(), but not set the node to EMPTY, which may result in uaf access. We should use RB_CLEAR_NODE() set the erased node to EMPTY, then pde_subdir_next() will return NULL to avoid uaf access. We found an uaf issue while using stress-ng testing, need to run testcase getdent and tun in the same time. The steps of the issue is as follows: 1) use getdent to traverse dir /proc/pid/net/dev_snmp6/, and current pde is tun3; 2) in the [time windows] unregister netdevice tun3 and tun2, and erase them from rbtree. erase tun3 first, and then erase tun2. the pde(tun2) will be released to slab; 3) continue to getdent process, then pde_subdir_next() will return pde(tun2) which is released, it will case uaf access. CPU 0 | CPU 1 ------------------------------------------------------------------------- traverse dir /proc/pid/net/dev_snmp6/ | unregister_netdevice(tun->dev) //tun3 tun2 sys_getdents64() | iterate_dir() | proc_readdir() | proc_readdir_de() | snmp6_unregister_dev() pde_get(de); | proc_remove() read_unlock(&proc_subdir_lock); | remove_proc_subtree() | write_lock(&proc_subdir_lock); [time window] | rb_erase(&root->subdir_node, &parent->subdir); | write_unlock(&proc_subdir_lock); read_lock(&proc_subdir_lock); | next = pde_subdir_next(de); | pde_put(de); | de = next; //UAF | rbtree of dev_snmp6 | pde(tun3) / \ NULL pde(tun2)
Затронутые продукты
Ссылки
- CVE-2025-40271
- SUSE Bug 1255297
Описание
In the Linux kernel, the following vulnerability has been resolved: mm/secretmem: fix use-after-free race in fault handler When a page fault occurs in a secret memory file created with `memfd_secret(2)`, the kernel will allocate a new folio for it, mark the underlying page as not-present in the direct map, and add it to the file mapping. If two tasks cause a fault in the same page concurrently, both could end up allocating a folio and removing the page from the direct map, but only one would succeed in adding the folio to the file mapping. The task that failed undoes the effects of its attempt by (a) freeing the folio again and (b) putting the page back into the direct map. However, by doing these two operations in this order, the page becomes available to the allocator again before it is placed back in the direct mapping. If another task attempts to allocate the page between (a) and (b), and the kernel tries to access it via the direct map, it would result in a supervisor not-present page fault. Fix the ordering to restore the direct map before the folio is freed.
Затронутые продукты
Ссылки
- CVE-2025-40272
- SUSE Bug 1254832
Описание
In the Linux kernel, the following vulnerability has been resolved: NFSD: free copynotify stateid in nfs4_free_ol_stateid() Typically copynotify stateid is freed either when parent's stateid is being close/freed or in nfsd4_laundromat if the stateid hasn't been used in a lease period. However, in case when the server got an OPEN (which created a parent stateid), followed by a COPY_NOTIFY using that stateid, followed by a client reboot. New client instance while doing CREATE_SESSION would force expire previous state of this client. It leads to the open state being freed thru release_openowner-> nfs4_free_ol_stateid() and it finds that it still has copynotify stateid associated with it. We currently print a warning and is triggerred WARNING: CPU: 1 PID: 8858 at fs/nfsd/nfs4state.c:1550 nfs4_free_ol_stateid+0xb0/0x100 [nfsd] This patch, instead, frees the associated copynotify stateid here. If the parent stateid is freed (without freeing the copynotify stateids associated with it), it leads to the list corruption when laundromat ends up freeing the copynotify state later. [ 1626.839430] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP [ 1626.842828] Modules linked in: nfnetlink_queue nfnetlink_log bluetooth cfg80211 rpcrdma rdma_cm iw_cm ib_cm ib_core nfsd nfs_acl lockd grace nfs_localio ext4 crc16 mbcache jbd2 overlay uinput snd_seq_dummy snd_hrtimer qrtr rfkill vfat fat uvcvideo snd_hda_codec_generic videobuf2_vmalloc videobuf2_memops snd_hda_intel uvc snd_intel_dspcfg videobuf2_v4l2 videobuf2_common snd_hda_codec snd_hda_core videodev snd_hwdep snd_seq mc snd_seq_device snd_pcm snd_timer snd soundcore sg loop auth_rpcgss vsock_loopback vmw_vsock_virtio_transport_common vmw_vsock_vmci_transport vmw_vmci vsock xfs 8021q garp stp llc mrp nvme ghash_ce e1000e nvme_core sr_mod nvme_keyring nvme_auth cdrom vmwgfx drm_ttm_helper ttm sunrpc dm_mirror dm_region_hash dm_log iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi fuse dm_multipath dm_mod nfnetlink [ 1626.855594] CPU: 2 UID: 0 PID: 199 Comm: kworker/u24:33 Kdump: loaded Tainted: G B W 6.17.0-rc7+ #22 PREEMPT(voluntary) [ 1626.857075] Tainted: [B]=BAD_PAGE, [W]=WARN [ 1626.857573] Hardware name: VMware, Inc. VMware20,1/VBSA, BIOS VMW201.00V.24006586.BA64.2406042154 06/04/2024 [ 1626.858724] Workqueue: nfsd4 laundromat_main [nfsd] [ 1626.859304] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) [ 1626.860010] pc : __list_del_entry_valid_or_report+0x148/0x200 [ 1626.860601] lr : __list_del_entry_valid_or_report+0x148/0x200 [ 1626.861182] sp : ffff8000881d7a40 [ 1626.861521] x29: ffff8000881d7a40 x28: 0000000000000018 x27: ffff0000c2a98200 [ 1626.862260] x26: 0000000000000600 x25: 0000000000000000 x24: ffff8000881d7b20 [ 1626.862986] x23: ffff0000c2a981e8 x22: 1fffe00012410e7d x21: ffff0000920873e8 [ 1626.863701] x20: ffff0000920873e8 x19: ffff000086f22998 x18: 0000000000000000 [ 1626.864421] x17: 20747562202c3839 x16: 3932326636383030 x15: 3030666666662065 [ 1626.865092] x14: 6220646c756f6873 x13: 0000000000000001 x12: ffff60004fd9e4a3 [ 1626.865713] x11: 1fffe0004fd9e4a2 x10: ffff60004fd9e4a2 x9 : dfff800000000000 [ 1626.866320] x8 : 00009fffb0261b5e x7 : ffff00027ecf2513 x6 : 0000000000000001 [ 1626.866938] x5 : ffff00027ecf2510 x4 : ffff60004fd9e4a3 x3 : 0000000000000000 [ 1626.867553] x2 : 0000000000000000 x1 : ffff000096069640 x0 : 000000000000006d [ 1626.868167] Call trace: [ 1626.868382] __list_del_entry_valid_or_report+0x148/0x200 (P) [ 1626.868876] _free_cpntf_state_locked+0xd0/0x268 [nfsd] [ 1626.869368] nfs4_laundromat+0x6f8/0x1058 [nfsd] [ 1626.869813] laundromat_main+0x24/0x60 [nfsd] [ 1626.870231] process_one_work+0x584/0x1050 [ 1626.870595] worker_thread+0x4c4/0xc60 [ 1626.870893] kthread+0x2f8/0x398 [ 1626.871146] ret_from_fork+0x10/0x20 [ 1626.871422] Code: aa1303e1 aa1403e3 910e8000 97bc55d7 (d4210000) [ 1626.871892] SMP: stopping secondary CPUs
Затронутые продукты
Ссылки
- CVE-2025-40273
- SUSE Bug 1254828
Описание
In the Linux kernel, the following vulnerability has been resolved: KVM: guest_memfd: Remove bindings on memslot deletion when gmem is dying When unbinding a memslot from a guest_memfd instance, remove the bindings even if the guest_memfd file is dying, i.e. even if its file refcount has gone to zero. If the memslot is freed before the file is fully released, nullifying the memslot side of the binding in kvm_gmem_release() will write to freed memory, as detected by syzbot+KASAN: ================================================================== BUG: KASAN: slab-use-after-free in kvm_gmem_release+0x176/0x440 virt/kvm/guest_memfd.c:353 Write of size 8 at addr ffff88807befa508 by task syz.0.17/6022 CPU: 0 UID: 0 PID: 6022 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/02/2025 Call Trace: <TASK> dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x240 mm/kasan/report.c:482 kasan_report+0x118/0x150 mm/kasan/report.c:595 kvm_gmem_release+0x176/0x440 virt/kvm/guest_memfd.c:353 __fput+0x44c/0xa70 fs/file_table.c:468 task_work_run+0x1d4/0x260 kernel/task_work.c:227 resume_user_mode_work include/linux/resume_user_mode.h:50 [inline] exit_to_user_mode_loop+0xe9/0x130 kernel/entry/common.c:43 exit_to_user_mode_prepare include/linux/irq-entry-common.h:225 [inline] syscall_exit_to_user_mode_work include/linux/entry-common.h:175 [inline] syscall_exit_to_user_mode include/linux/entry-common.h:210 [inline] do_syscall_64+0x2bd/0xfa0 arch/x86/entry/syscall_64.c:100 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7fbeeff8efc9 </TASK> Allocated by task 6023: kasan_save_stack mm/kasan/common.c:56 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:77 poison_kmalloc_redzone mm/kasan/common.c:397 [inline] __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:414 kasan_kmalloc include/linux/kasan.h:262 [inline] __kmalloc_cache_noprof+0x3e2/0x700 mm/slub.c:5758 kmalloc_noprof include/linux/slab.h:957 [inline] kzalloc_noprof include/linux/slab.h:1094 [inline] kvm_set_memory_region+0x747/0xb90 virt/kvm/kvm_main.c:2104 kvm_vm_ioctl_set_memory_region+0x6f/0xd0 virt/kvm/kvm_main.c:2154 kvm_vm_ioctl+0x957/0xc60 virt/kvm/kvm_main.c:5201 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl+0xfc/0x170 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 6023: kasan_save_stack mm/kasan/common.c:56 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:77 kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:584 poison_slab_object mm/kasan/common.c:252 [inline] __kasan_slab_free+0x5c/0x80 mm/kasan/common.c:284 kasan_slab_free include/linux/kasan.h:234 [inline] slab_free_hook mm/slub.c:2533 [inline] slab_free mm/slub.c:6622 [inline] kfree+0x19a/0x6d0 mm/slub.c:6829 kvm_set_memory_region+0x9c4/0xb90 virt/kvm/kvm_main.c:2130 kvm_vm_ioctl_set_memory_region+0x6f/0xd0 virt/kvm/kvm_main.c:2154 kvm_vm_ioctl+0x957/0xc60 virt/kvm/kvm_main.c:5201 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl+0xfc/0x170 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Deliberately don't acquire filemap invalid lock when the file is dying as the lifecycle of f_mapping is outside the purview of KVM. Dereferencing the mapping is *probably* fine, but there's no need to invalidate anything as memslot deletion is responsible for zapping SPTEs, and the only code that can access the dying file is kvm_gmem_release(), whose core code is mutual ---truncated---
Затронутые продукты
Ссылки
- CVE-2025-40274
- SUSE Bug 1254830
Описание
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Fix NULL pointer dereference in snd_usb_mixer_controls_badd In snd_usb_create_streams(), for UAC version 3 devices, the Interface Association Descriptor (IAD) is retrieved via usb_ifnum_to_if(). If this call fails, a fallback routine attempts to obtain the IAD from the next interface and sets a BADD profile. However, snd_usb_mixer_controls_badd() assumes that the IAD retrieved from usb_ifnum_to_if() is always valid, without performing a NULL check. This can lead to a NULL pointer dereference when usb_ifnum_to_if() fails to find the interface descriptor. This patch adds a NULL pointer check after calling usb_ifnum_to_if() in snd_usb_mixer_controls_badd() to prevent the dereference. This issue was discovered by syzkaller, which triggered the bug by sending a crafted USB device descriptor.
Затронутые продукты
Ссылки
- CVE-2025-40275
- SUSE Bug 1254829
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/panthor: Flush shmem writes before mapping buffers CPU-uncached The shmem layer zeroes out the new pages using cached mappings, and if we don't CPU-flush we might leave dirty cachelines behind, leading to potential data leaks and/or asynchronous buffer corruption when dirty cachelines are evicted.
Затронутые продукты
Ссылки
- CVE-2025-40276
- SUSE Bug 1254824
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Validate command header size against SVGA_CMD_MAX_DATASIZE This data originates from userspace and is used in buffer offset calculations which could potentially overflow causing an out-of-bounds access.
Затронутые продукты
Ссылки
- CVE-2025-40277
- SUSE Bug 1254894
Описание
In the Linux kernel, the following vulnerability has been resolved: net: sched: act_ife: initialize struct tc_ife to fix KMSAN kernel-infoleak Fix a KMSAN kernel-infoleak detected by the syzbot . [net?] KMSAN: kernel-infoleak in __skb_datagram_iter In tcf_ife_dump(), the variable 'opt' was partially initialized using a designatied initializer. While the padding bytes are reamined uninitialized. nla_put() copies the entire structure into a netlink message, these uninitialized bytes leaked to userspace. Initialize the structure with memset before assigning its fields to ensure all members and padding are cleared prior to beign copied. This change silences the KMSAN report and prevents potential information leaks from the kernel memory. This fix has been tested and validated by syzbot. This patch closes the bug reported at the following syzkaller link and ensures no infoleak.
Затронутые продукты
Ссылки
- CVE-2025-40278
- SUSE Bug 1254825
Описание
In the Linux kernel, the following vulnerability has been resolved: net: sched: act_connmark: initialize struct tc_ife to fix kernel leak In tcf_connmark_dump(), the variable 'opt' was partially initialized using a designatied initializer. While the padding bytes are reamined uninitialized. nla_put() copies the entire structure into a netlink message, these uninitialized bytes leaked to userspace. Initialize the structure with memset before assigning its fields to ensure all members and padding are cleared prior to beign copied.
Затронутые продукты
Ссылки
- CVE-2025-40279
- SUSE Bug 1254846
Описание
In the Linux kernel, the following vulnerability has been resolved: tipc: Fix use-after-free in tipc_mon_reinit_self(). syzbot reported use-after-free of tipc_net(net)->monitors[] in tipc_mon_reinit_self(). [0] The array is protected by RTNL, but tipc_mon_reinit_self() iterates over it without RTNL. tipc_mon_reinit_self() is called from tipc_net_finalize(), which is always under RTNL except for tipc_net_finalize_work(). Let's hold RTNL in tipc_net_finalize_work(). [0]: BUG: KASAN: slab-use-after-free in __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline] BUG: KASAN: slab-use-after-free in _raw_spin_lock_irqsave+0xa7/0xf0 kernel/locking/spinlock.c:162 Read of size 1 at addr ffff88805eae1030 by task kworker/0:7/5989 CPU: 0 UID: 0 PID: 5989 Comm: kworker/0:7 Not tainted syzkaller #0 PREEMPT_{RT,(full)} Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/18/2025 Workqueue: events tipc_net_finalize_work Call Trace: <TASK> dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x240 mm/kasan/report.c:482 kasan_report+0x118/0x150 mm/kasan/report.c:595 __kasan_check_byte+0x2a/0x40 mm/kasan/common.c:568 kasan_check_byte include/linux/kasan.h:399 [inline] lock_acquire+0x8d/0x360 kernel/locking/lockdep.c:5842 __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline] _raw_spin_lock_irqsave+0xa7/0xf0 kernel/locking/spinlock.c:162 rtlock_slowlock kernel/locking/rtmutex.c:1894 [inline] rwbase_rtmutex_lock_state kernel/locking/spinlock_rt.c:160 [inline] rwbase_write_lock+0xd3/0x7e0 kernel/locking/rwbase_rt.c:244 rt_write_lock+0x76/0x110 kernel/locking/spinlock_rt.c:243 write_lock_bh include/linux/rwlock_rt.h:99 [inline] tipc_mon_reinit_self+0x79/0x430 net/tipc/monitor.c:718 tipc_net_finalize+0x115/0x190 net/tipc/net.c:140 process_one_work kernel/workqueue.c:3236 [inline] process_scheduled_works+0xade/0x17b0 kernel/workqueue.c:3319 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3400 kthread+0x70e/0x8a0 kernel/kthread.c:463 ret_from_fork+0x439/0x7d0 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 </TASK> Allocated by task 6089: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:388 [inline] __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:405 kasan_kmalloc include/linux/kasan.h:260 [inline] __kmalloc_cache_noprof+0x1a8/0x320 mm/slub.c:4407 kmalloc_noprof include/linux/slab.h:905 [inline] kzalloc_noprof include/linux/slab.h:1039 [inline] tipc_mon_create+0xc3/0x4d0 net/tipc/monitor.c:657 tipc_enable_bearer net/tipc/bearer.c:357 [inline] __tipc_nl_bearer_enable+0xe16/0x13f0 net/tipc/bearer.c:1047 __tipc_nl_compat_doit net/tipc/netlink_compat.c:371 [inline] tipc_nl_compat_doit+0x3bc/0x5f0 net/tipc/netlink_compat.c:393 tipc_nl_compat_handle net/tipc/netlink_compat.c:-1 [inline] tipc_nl_compat_recv+0x83c/0xbe0 net/tipc/netlink_compat.c:1321 genl_family_rcv_msg_doit+0x215/0x300 net/netlink/genetlink.c:1115 genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline] genl_rcv_msg+0x60e/0x790 net/netlink/genetlink.c:1210 netlink_rcv_skb+0x208/0x470 net/netlink/af_netlink.c:2552 genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219 netlink_unicast_kernel net/netlink/af_netlink.c:1320 [inline] netlink_unicast+0x846/0xa10 net/netlink/af_netlink.c:1346 netlink_sendmsg+0x805/0xb30 net/netlink/af_netlink.c:1896 sock_sendmsg_nosec net/socket.c:714 [inline] __sock_sendmsg+0x21c/0x270 net/socket.c:729 ____sys_sendmsg+0x508/0x820 net/socket.c:2614 ___sys_sendmsg+0x21f/0x2a0 net/socket.c:2668 __sys_sendmsg net/socket.c:2700 [inline] __do_sys_sendmsg net/socket.c:2705 [inline] __se_sys_sendmsg net/socket.c:2703 [inline] __x64_sys_sendmsg+0x1a1/0x260 net/socket.c:2703 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/ ---truncated---
Затронутые продукты
Ссылки
- CVE-2025-40280
- SUSE Bug 1254847
- SUSE Bug 1254951
Описание
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: 6lowpan: reset link-local header on ipv6 recv path Bluetooth 6lowpan.c netdev has header_ops, so it must set link-local header for RX skb, otherwise things crash, eg. with AF_PACKET SOCK_RAW Add missing skb_reset_mac_header() for uncompressed ipv6 RX path. For the compressed one, it is done in lowpan_header_decompress(). Log: (BlueZ 6lowpan-tester Client Recv Raw - Success) ------ kernel BUG at net/core/skbuff.c:212! Call Trace: <IRQ> ... packet_rcv (net/packet/af_packet.c:2152) ... <TASK> __local_bh_enable_ip (kernel/softirq.c:407) netif_rx (net/core/dev.c:5648) chan_recv_cb (net/bluetooth/6lowpan.c:294 net/bluetooth/6lowpan.c:359) ------
Затронутые продукты
Ссылки
- CVE-2025-40282
- SUSE Bug 1254850
Описание
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btusb: reorder cleanup in btusb_disconnect to avoid UAF There is a KASAN: slab-use-after-free read in btusb_disconnect(). Calling "usb_driver_release_interface(&btusb_driver, data->intf)" will free the btusb data associated with the interface. The same data is then used later in the function, hence the UAF. Fix by moving the accesses to btusb data to before the data is free'd.
Затронутые продукты
Ссылки
- CVE-2025-40283
- SUSE Bug 1254858
- SUSE Bug 1254859
Описание
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: cancel mesh send timer when hdev removed mesh_send_done timer is not canceled when hdev is removed, which causes crash if the timer triggers after hdev is gone. Cancel the timer when MGMT removes the hdev, like other MGMT timers. Should fix the BUG: sporadically seen by BlueZ test bot (in "Mesh - Send cancel - 1" test). Log: ------ BUG: KASAN: slab-use-after-free in run_timer_softirq+0x76b/0x7d0 ... Freed by task 36: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 __kasan_save_free_info+0x3a/0x60 __kasan_slab_free+0x43/0x70 kfree+0x103/0x500 device_release+0x9a/0x210 kobject_put+0x100/0x1e0 vhci_release+0x18b/0x240 ------
Затронутые продукты
Ссылки
- CVE-2025-40284
- SUSE Bug 1254860
Описание
In the Linux kernel, the following vulnerability has been resolved: exfat: fix improper check of dentry.stream.valid_size We found an infinite loop bug in the exFAT file system that can lead to a Denial-of-Service (DoS) condition. When a dentry in an exFAT filesystem is malformed, the following system calls - SYS_openat, SYS_ftruncate, and SYS_pwrite64 - can cause the kernel to hang. Root cause analysis shows that the size validation code in exfat_find() does not check whether dentry.stream.valid_size is negative. As a result, the system calls mentioned above can succeed and eventually trigger the DoS issue. This patch adds a check for negative dentry.stream.valid_size to prevent this vulnerability.
Затронутые продукты
Ссылки
- CVE-2025-40287
- SUSE Bug 1255030
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix NULL pointer dereference in VRAM logic for APU devices Previously, APU platforms (and other scenarios with uninitialized VRAM managers) triggered a NULL pointer dereference in `ttm_resource_manager_usage()`. The root cause is not that the `struct ttm_resource_manager *man` pointer itself is NULL, but that `man->bdev` (the backing device pointer within the manager) remains uninitialized (NULL) on APUs-since APUs lack dedicated VRAM and do not fully set up VRAM manager structures. When `ttm_resource_manager_usage()` attempts to acquire `man->bdev->lru_lock`, it dereferences the NULL `man->bdev`, leading to a kernel OOPS. 1. **amdgpu_cs.c**: Extend the existing bandwidth control check in `amdgpu_cs_get_threshold_for_moves()` to include a check for `ttm_resource_manager_used()`. If the manager is not used (uninitialized `bdev`), return 0 for migration thresholds immediately-skipping VRAM-specific logic that would trigger the NULL dereference. 2. **amdgpu_kms.c**: Update the `AMDGPU_INFO_VRAM_USAGE` ioctl and memory info reporting to use a conditional: if the manager is used, return the real VRAM usage; otherwise, return 0. This avoids accessing `man->bdev` when it is NULL. 3. **amdgpu_virt.c**: Modify the vf2pf (virtual function to physical function) data write path. Use `ttm_resource_manager_used()` to check validity: if the manager is usable, calculate `fb_usage` from VRAM usage; otherwise, set `fb_usage` to 0 (APUs have no discrete framebuffer to report). This approach is more robust than APU-specific checks because it: - Works for all scenarios where the VRAM manager is uninitialized (not just APUs), - Aligns with TTM's design by using its native helper function, - Preserves correct behavior for discrete GPUs (which have fully initialized `man->bdev` and pass the `ttm_resource_manager_used()` check). v4: use ttm_resource_manager_used(&adev->mman.vram_mgr.manager) instead of checking the adev->gmc.is_app_apu flag (Christian)
Затронутые продукты
Ссылки
- CVE-2025-40288
- SUSE Bug 1255057
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: hide VRAM sysfs attributes on GPUs without VRAM Otherwise accessing them can cause a crash.
Затронутые продукты
Ссылки
- CVE-2025-40289
- SUSE Bug 1255042
Описание
In the Linux kernel, the following vulnerability has been resolved: virtio-net: fix received length check in big packets Since commit 4959aebba8c0 ("virtio-net: use mtu size as buffer length for big packets"), when guest gso is off, the allocated size for big packets is not MAX_SKB_FRAGS * PAGE_SIZE anymore but depends on negotiated MTU. The number of allocated frags for big packets is stored in vi->big_packets_num_skbfrags. Because the host announced buffer length can be malicious (e.g. the host vhost_net driver's get_rx_bufs is modified to announce incorrect length), we need a check in virtio_net receive path. Currently, the check is not adapted to the new change which can lead to NULL page pointer dereference in the below while loop when receiving length that is larger than the allocated one. This commit fixes the received length check corresponding to the new change.
Затронутые продукты
Ссылки
- CVE-2025-40292
- SUSE Bug 1255175
Описание
In the Linux kernel, the following vulnerability has been resolved: iommufd: Don't overflow during division for dirty tracking If pgshift is 63 then BITS_PER_TYPE(*bitmap->bitmap) * pgsize will overflow to 0 and this triggers divide by 0. In this case the index should just be 0, so reorganize things to divide by shift and avoid hitting any overflows.
Затронутые продукты
Ссылки
- CVE-2025-40293
- SUSE Bug 1255179
Описание
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: Fix OOB access in parse_adv_monitor_pattern() In the parse_adv_monitor_pattern() function, the value of the 'length' variable is currently limited to HCI_MAX_EXT_AD_LENGTH(251). The size of the 'value' array in the mgmt_adv_pattern structure is 31. If the value of 'pattern[i].length' is set in the user space and exceeds 31, the 'patterns[i].value' array can be accessed out of bound when copied. Increasing the size of the 'value' array in the 'mgmt_adv_pattern' structure will break the userspace. Considering this, and to avoid OOB access revert the limits for 'offset' and 'length' back to the value of HCI_MAX_AD_LENGTH. Found by InfoTeCS on behalf of Linux Verification Center (linuxtesting.org) with SVACE.
Затронутые продукты
Ссылки
- CVE-2025-40294
- SUSE Bug 1255181
Описание
In the Linux kernel, the following vulnerability has been resolved: net: bridge: fix use-after-free due to MST port state bypass syzbot reported[1] a use-after-free when deleting an expired fdb. It is due to a race condition between learning still happening and a port being deleted, after all its fdbs have been flushed. The port's state has been toggled to disabled so no learning should happen at that time, but if we have MST enabled, it will bypass the port's state, that together with VLAN filtering disabled can lead to fdb learning at a time when it shouldn't happen while the port is being deleted. VLAN filtering must be disabled because we flush the port VLANs when it's being deleted which will stop learning. This fix adds a check for the port's vlan group which is initialized to NULL when the port is getting deleted, that avoids the port state bypass. When MST is enabled there would be a minimal new overhead in the fast-path because the port's vlan group pointer is cache-hot. [1] https://syzkaller.appspot.com/bug?extid=dd280197f0f7ab3917be
Затронутые продукты
Ссылки
- CVE-2025-40297
- SUSE Bug 1255187
- SUSE Bug 1255895
Описание
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_event: validate skb length for unknown CC opcode In hci_cmd_complete_evt(), if the command complete event has an unknown opcode, we assume the first byte of the remaining skb->data contains the return status. However, parameter data has previously been pulled in hci_event_func(), which may leave the skb empty. If so, using skb->data[0] for the return status uses un-init memory. The fix is to check skb->len before using skb->data.
Затронутые продукты
Ссылки
- CVE-2025-40301
- SUSE Bug 1255193
Описание
In the Linux kernel, the following vulnerability has been resolved: media: videobuf2: forbid remove_bufs when legacy fileio is active vb2_ioctl_remove_bufs() call manipulates queue internal buffer list, potentially overwriting some pointers used by the legacy fileio access mode. Forbid that ioctl when fileio is active to protect internal queue state between subsequent read/write calls.
Затронутые продукты
Ссылки
- CVE-2025-40302
- SUSE Bug 1255196
Описание
In the Linux kernel, the following vulnerability has been resolved: btrfs: ensure no dirty metadata is written back for an fs with errors [BUG] During development of a minor feature (make sure all btrfs_bio::end_io() is called in task context), I noticed a crash in generic/388, where metadata writes triggered new works after btrfs_stop_all_workers(). It turns out that it can even happen without any code modification, just using RAID5 for metadata and the same workload from generic/388 is going to trigger the use-after-free. [CAUSE] If btrfs hits an error, the fs is marked as error, no new transaction is allowed thus metadata is in a frozen state. But there are some metadata modifications before that error, and they are still in the btree inode page cache. Since there will be no real transaction commit, all those dirty folios are just kept as is in the page cache, and they can not be invalidated by invalidate_inode_pages2() call inside close_ctree(), because they are dirty. And finally after btrfs_stop_all_workers(), we call iput() on btree inode, which triggers writeback of those dirty metadata. And if the fs is using RAID56 metadata, this will trigger RMW and queue new works into rmw_workers, which is already stopped, causing warning from queue_work() and use-after-free. [FIX] Add a special handling for write_one_eb(), that if the fs is already in an error state, immediately mark the bbio as failure, instead of really submitting them. Then during close_ctree(), iput() will just discard all those dirty tree blocks without really writing them back, thus no more new jobs for already stopped-and-freed workqueues. The extra discard in write_one_eb() also acts as an extra safenet. E.g. the transaction abort is triggered by some extent/free space tree corruptions, and since extent/free space tree is already corrupted some tree blocks may be allocated where they shouldn't be (overwriting existing tree blocks). In that case writing them back will further corrupting the fs.
Затронутые продукты
Ссылки
- CVE-2025-40303
- SUSE Bug 1255058
Описание
In the Linux kernel, the following vulnerability has been resolved: fbdev: Add bounds checking in bit_putcs to fix vmalloc-out-of-bounds Add bounds checking to prevent writes past framebuffer boundaries when rendering text near screen edges. Return early if the Y position is off-screen and clip image height to screen boundary. Break from the rendering loop if the X position is off-screen. When clipping image width to fit the screen, update the character count to match the clipped width to prevent buffer size mismatches. Without the character count update, bit_putcs_aligned and bit_putcs_unaligned receive mismatched parameters where the buffer is allocated for the clipped width but cnt reflects the original larger count, causing out-of-bounds writes.
Затронутые продукты
Ссылки
- CVE-2025-40304
- SUSE Bug 1255034
Описание
In the Linux kernel, the following vulnerability has been resolved: exfat: validate cluster allocation bits of the allocation bitmap syzbot created an exfat image with cluster bits not set for the allocation bitmap. exfat-fs reads and uses the allocation bitmap without checking this. The problem is that if the start cluster of the allocation bitmap is 6, cluster 6 can be allocated when creating a directory with mkdir. exfat zeros out this cluster in exfat_mkdir, which can delete existing entries. This can reallocate the allocated entries. In addition, the allocation bitmap is also zeroed out, so cluster 6 can be reallocated. This patch adds exfat_test_bitmap_range to validate that clusters used for the allocation bitmap are correctly marked as in-use.
Затронутые продукты
Ссылки
- CVE-2025-40307
- SUSE Bug 1255039
Описание
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: bcsp: receive data only if registered Currently, bcsp_recv() can be called even when the BCSP protocol has not been registered. This leads to a NULL pointer dereference, as shown in the following stack trace: KASAN: null-ptr-deref in range [0x0000000000000108-0x000000000000010f] RIP: 0010:bcsp_recv+0x13d/0x1740 drivers/bluetooth/hci_bcsp.c:590 Call Trace: <TASK> hci_uart_tty_receive+0x194/0x220 drivers/bluetooth/hci_ldisc.c:627 tiocsti+0x23c/0x2c0 drivers/tty/tty_io.c:2290 tty_ioctl+0x626/0xde0 drivers/tty/tty_io.c:2706 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:907 [inline] __se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f To prevent this, ensure that the HCI_UART_REGISTERED flag is set before processing received data. If the protocol is not registered, return -EUNATCH.
Затронутые продукты
Ссылки
- CVE-2025-40308
- SUSE Bug 1255064
Описание
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: SCO: Fix UAF on sco_conn_free BUG: KASAN: slab-use-after-free in sco_conn_free net/bluetooth/sco.c:87 [inline] BUG: KASAN: slab-use-after-free in kref_put include/linux/kref.h:65 [inline] BUG: KASAN: slab-use-after-free in sco_conn_put+0xdd/0x410 net/bluetooth/sco.c:107 Write of size 8 at addr ffff88811cb96b50 by task kworker/u17:4/352 CPU: 1 UID: 0 PID: 352 Comm: kworker/u17:4 Not tainted 6.17.0-rc5-g717368f83676 #4 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Workqueue: hci13 hci_cmd_sync_work Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x10b/0x170 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x191/0x550 mm/kasan/report.c:482 kasan_report+0xc4/0x100 mm/kasan/report.c:595 sco_conn_free net/bluetooth/sco.c:87 [inline] kref_put include/linux/kref.h:65 [inline] sco_conn_put+0xdd/0x410 net/bluetooth/sco.c:107 sco_connect_cfm+0xb4/0xae0 net/bluetooth/sco.c:1441 hci_connect_cfm include/net/bluetooth/hci_core.h:2082 [inline] hci_conn_failed+0x20a/0x2e0 net/bluetooth/hci_conn.c:1313 hci_conn_unlink+0x55f/0x810 net/bluetooth/hci_conn.c:1121 hci_conn_del+0xb6/0x1110 net/bluetooth/hci_conn.c:1147 hci_abort_conn_sync+0x8c5/0xbb0 net/bluetooth/hci_sync.c:5689 hci_cmd_sync_work+0x281/0x380 net/bluetooth/hci_sync.c:332 process_one_work kernel/workqueue.c:3236 [inline] process_scheduled_works+0x77e/0x1040 kernel/workqueue.c:3319 worker_thread+0xbee/0x1200 kernel/workqueue.c:3400 kthread+0x3c7/0x870 kernel/kthread.c:463 ret_from_fork+0x13a/0x1e0 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 </TASK> Allocated by task 31370: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x30/0x70 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:388 [inline] __kasan_kmalloc+0x82/0x90 mm/kasan/common.c:405 kasan_kmalloc include/linux/kasan.h:260 [inline] __do_kmalloc_node mm/slub.c:4382 [inline] __kmalloc_noprof+0x22f/0x390 mm/slub.c:4394 kmalloc_noprof include/linux/slab.h:909 [inline] sk_prot_alloc+0xae/0x220 net/core/sock.c:2239 sk_alloc+0x34/0x5a0 net/core/sock.c:2295 bt_sock_alloc+0x3c/0x330 net/bluetooth/af_bluetooth.c:151 sco_sock_alloc net/bluetooth/sco.c:562 [inline] sco_sock_create+0xc0/0x350 net/bluetooth/sco.c:593 bt_sock_create+0x161/0x3b0 net/bluetooth/af_bluetooth.c:135 __sock_create+0x3ad/0x780 net/socket.c:1589 sock_create net/socket.c:1647 [inline] __sys_socket_create net/socket.c:1684 [inline] __sys_socket+0xd5/0x330 net/socket.c:1731 __do_sys_socket net/socket.c:1745 [inline] __se_sys_socket net/socket.c:1743 [inline] __x64_sys_socket+0x7a/0x90 net/socket.c:1743 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xc7/0x240 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 31374: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x30/0x70 mm/kasan/common.c:68 kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:576 poison_slab_object mm/kasan/common.c:243 [inline] __kasan_slab_free+0x3d/0x50 mm/kasan/common.c:275 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2428 [inline] slab_free mm/slub.c:4701 [inline] kfree+0x199/0x3b0 mm/slub.c:4900 sk_prot_free net/core/sock.c:2278 [inline] __sk_destruct+0x4aa/0x630 net/core/sock.c:2373 sco_sock_release+0x2ad/0x300 net/bluetooth/sco.c:1333 __sock_release net/socket.c:649 [inline] sock_close+0xb8/0x230 net/socket.c:1439 __fput+0x3d1/0x9e0 fs/file_table.c:468 task_work_run+0x206/0x2a0 kernel/task_work.c:227 get_signal+0x1201/0x1410 kernel/signal.c:2807 arch_do_signal_or_restart+0x34/0x740 arch/x86/kernel/signal.c:337 exit_to_user_mode_loop+0x68/0xc0 kernel/entry/common.c:40 exit_to_user_mode_prepare include/linux/irq-entry-common.h:225 [inline] s ---truncated---
Затронутые продукты
Ссылки
- CVE-2025-40309
- SUSE Bug 1255065
- SUSE Bug 1255066
Описание
In the Linux kernel, the following vulnerability has been resolved: amd/amdkfd: resolve a race in amdgpu_amdkfd_device_fini_sw There is race in amdgpu_amdkfd_device_fini_sw and interrupt. if amdgpu_amdkfd_device_fini_sw run in b/w kfd_cleanup_nodes and kfree(kfd), and KGD interrupt generated. kernel panic log: BUG: kernel NULL pointer dereference, address: 0000000000000098 amdgpu 0000:c8:00.0: amdgpu: Requesting 4 partitions through PSP PGD d78c68067 P4D d78c68067 kfd kfd: amdgpu: Allocated 3969056 bytes on gart PUD 1465b8067 PMD @ Oops: @002 [#1] SMP NOPTI kfd kfd: amdgpu: Total number of KFD nodes to be created: 4 CPU: 115 PID: @ Comm: swapper/115 Kdump: loaded Tainted: G S W OE K RIP: 0010:_raw_spin_lock_irqsave+0x12/0x40 Code: 89 e@ 41 5c c3 cc cc cc cc 66 66 2e Of 1f 84 00 00 00 00 00 OF 1f 40 00 Of 1f 44% 00 00 41 54 9c 41 5c fa 31 cO ba 01 00 00 00 <fO> OF b1 17 75 Ba 4c 89 e@ 41 Sc 89 c6 e8 07 38 5d RSP: 0018: ffffc90@1a6b0e28 EFLAGS: 00010046 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000018 0000000000000001 RSI: ffff8883bb623e00 RDI: 0000000000000098 ffff8883bb000000 RO8: ffff888100055020 ROO: ffff888100055020 0000000000000000 R11: 0000000000000000 R12: 0900000000000002 ffff888F2b97da0@ R14: @000000000000098 R15: ffff8883babdfo00 CS: 010 DS: 0000 ES: 0000 CRO: 0000000080050033 CR2: 0000000000000098 CR3: 0000000e7cae2006 CR4: 0000000002770ce0 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 0000000000000000 DR6: 00000000fffeO7FO DR7: 0000000000000400 PKRU: 55555554 Call Trace: <IRQ> kgd2kfd_interrupt+@x6b/0x1f@ [amdgpu] ? amdgpu_fence_process+0xa4/0x150 [amdgpu] kfd kfd: amdgpu: Node: 0, interrupt_bitmap: 3 YcpxFl Rant tErace amdgpu_irq_dispatch+0x165/0x210 [amdgpu] amdgpu_ih_process+0x80/0x100 [amdgpu] amdgpu: Virtual CRAT table created for GPU amdgpu_irq_handler+0x1f/@x60 [amdgpu] __handle_irq_event_percpu+0x3d/0x170 amdgpu: Topology: Add dGPU node [0x74a2:0x1002] handle_irq_event+0x5a/@xcO handle_edge_irq+0x93/0x240 kfd kfd: amdgpu: KFD node 1 partition @ size 49148M asm_call_irq_on_stack+0xf/@x20 </IRQ> common_interrupt+0xb3/0x130 asm_common_interrupt+0x1le/0x40 5.10.134-010.a1i5000.a18.x86_64 #1
Затронутые продукты
Ссылки
- CVE-2025-40310
- SUSE Bug 1255041
Описание
In the Linux kernel, the following vulnerability has been resolved: accel/habanalabs: support mapping cb with vmalloc-backed coherent memory When IOMMU is enabled, dma_alloc_coherent() with GFP_USER may return addresses from the vmalloc range. If such an address is mapped without VM_MIXEDMAP, vm_insert_page() will trigger a BUG_ON due to the VM_PFNMAP restriction. Fix this by checking for vmalloc addresses and setting VM_MIXEDMAP in the VMA before mapping. This ensures safe mapping and avoids kernel crashes. The memory is still driver-allocated and cannot be accessed directly by userspace.
Затронутые продукты
Ссылки
- CVE-2025-40311
- SUSE Bug 1255068
Описание
In the Linux kernel, the following vulnerability has been resolved: usb: cdns3: gadget: Use-after-free during failed initialization and exit of cdnsp gadget In the __cdnsp_gadget_init() and cdnsp_gadget_exit() functions, the gadget structure (pdev->gadget) was freed before its endpoints. The endpoints are linked via the ep_list in the gadget structure. Freeing the gadget first leaves dangling pointers in the endpoint list. When the endpoints are subsequently freed, this results in a use-after-free. Fix: By separating the usb_del_gadget_udc() operation into distinct "del" and "put" steps, cdnsp_gadget_free_endpoints() can be executed prior to the final release of the gadget structure with usb_put_gadget(). A patch similar to bb9c74a5bd14("usb: dwc3: gadget: Free gadget structure only after freeing endpoints").
Затронутые продукты
Ссылки
- CVE-2025-40314
- SUSE Bug 1255072
Описание
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_fs: Fix epfile null pointer access after ep enable. A race condition occurs when ffs_func_eps_enable() runs concurrently with ffs_data_reset(). The ffs_data_clear() called in ffs_data_reset() sets ffs->epfiles to NULL before resetting ffs->eps_count to 0, leading to a NULL pointer dereference when accessing epfile->ep in ffs_func_eps_enable() after successful usb_ep_enable(). The ffs->epfiles pointer is set to NULL in both ffs_data_clear() and ffs_data_close() functions, and its modification is protected by the spinlock ffs->eps_lock. And the whole ffs_func_eps_enable() function is also protected by ffs->eps_lock. Thus, add NULL pointer handling for ffs->epfiles in the ffs_func_eps_enable() function to fix issues
Затронутые продукты
Ссылки
- CVE-2025-40315
- SUSE Bug 1255083
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Fix device use-after-free on unbind A recent change fixed device reference leaks when looking up drm platform device driver data during bind() but failed to remove a partial fix which had been added by commit 80805b62ea5b ("drm/mediatek: Fix kobject put for component sub-drivers"). This results in a reference imbalance on component bind() failures and on unbind() which could lead to a user-after-free. Make sure to only drop the references after retrieving the driver data by effectively reverting the previous partial fix. Note that holding a reference to a device does not prevent its driver data from going away so there is no point in keeping the reference.
Затронутые продукты
Ссылки
- CVE-2025-40316
- SUSE Bug 1254797
Описание
In the Linux kernel, the following vulnerability has been resolved: regmap: slimbus: fix bus_context pointer in regmap init calls Commit 4e65bda8273c ("ASoC: wcd934x: fix error handling in wcd934x_codec_parse_data()") revealed the problem in the slimbus regmap. That commit breaks audio playback, for instance, on sdm845 Thundercomm Dragonboard 845c board: Unable to handle kernel paging request at virtual address ffff8000847cbad4 ... CPU: 5 UID: 0 PID: 776 Comm: aplay Not tainted 6.18.0-rc1-00028-g7ea30958b305 #11 PREEMPT Hardware name: Thundercomm Dragonboard 845c (DT) ... Call trace: slim_xfer_msg+0x24/0x1ac [slimbus] (P) slim_read+0x48/0x74 [slimbus] regmap_slimbus_read+0x18/0x24 [regmap_slimbus] _regmap_raw_read+0xe8/0x174 _regmap_bus_read+0x44/0x80 _regmap_read+0x60/0xd8 _regmap_update_bits+0xf4/0x140 _regmap_select_page+0xa8/0x124 _regmap_raw_write_impl+0x3b8/0x65c _regmap_bus_raw_write+0x60/0x80 _regmap_write+0x58/0xc0 regmap_write+0x4c/0x80 wcd934x_hw_params+0x494/0x8b8 [snd_soc_wcd934x] snd_soc_dai_hw_params+0x3c/0x7c [snd_soc_core] __soc_pcm_hw_params+0x22c/0x634 [snd_soc_core] dpcm_be_dai_hw_params+0x1d4/0x38c [snd_soc_core] dpcm_fe_dai_hw_params+0x9c/0x17c [snd_soc_core] snd_pcm_hw_params+0x124/0x464 [snd_pcm] snd_pcm_common_ioctl+0x110c/0x1820 [snd_pcm] snd_pcm_ioctl+0x34/0x4c [snd_pcm] __arm64_sys_ioctl+0xac/0x104 invoke_syscall+0x48/0x104 el0_svc_common.constprop.0+0x40/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x34/0xec el0t_64_sync_handler+0xa0/0xf0 el0t_64_sync+0x198/0x19c The __devm_regmap_init_slimbus() started to be used instead of __regmap_init_slimbus() after the commit mentioned above and turns out the incorrect bus_context pointer (3rd argument) was used in __devm_regmap_init_slimbus(). It should be just "slimbus" (which is equal to &slimbus->dev). Correct it. The wcd934x codec seems to be the only or the first user of devm_regmap_init_slimbus() but we should fix it till the point where __devm_regmap_init_slimbus() was introduced therefore two "Fixes" tags. While at this, also correct the same argument in __regmap_init_slimbus().
Затронутые продукты
Ссылки
- CVE-2025-40317
- SUSE Bug 1254796
Описание
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sync: fix race in hci_cmd_sync_dequeue_once hci_cmd_sync_dequeue_once() does lookup and then cancel the entry under two separate lock sections. Meanwhile, hci_cmd_sync_work() can also delete the same entry, leading to double list_del() and "UAF". Fix this by holding cmd_sync_work_lock across both lookup and cancel, so that the entry cannot be removed concurrently.
Затронутые продукты
Ссылки
- CVE-2025-40318
- SUSE Bug 1254798
Описание
In the Linux kernel, the following vulnerability has been resolved: bpf: Sync pending IRQ work before freeing ring buffer Fix a race where irq_work can be queued in bpf_ringbuf_commit() but the ring buffer is freed before the work executes. In the syzbot reproducer, a BPF program attached to sched_switch triggers bpf_ringbuf_commit(), queuing an irq_work. If the ring buffer is freed before this work executes, the irq_work thread may accesses freed memory. Calling `irq_work_sync(&rb->work)` ensures that all pending irq_work complete before freeing the buffer.
Затронутые продукты
Ссылки
- CVE-2025-40319
- SUSE Bug 1254794
Описание
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential cfid UAF in smb2_query_info_compound When smb2_query_info_compound() retries, a previously allocated cfid may have been freed in the first attempt. Because cfid wasn't reset on replay, later cleanup could act on a stale pointer, leading to a potential use-after-free. Reinitialize cfid to NULL under the replay label. Example trace (trimmed): refcount_t: underflow; use-after-free. WARNING: CPU: 1 PID: 11224 at ../lib/refcount.c:28 refcount_warn_saturate+0x9c/0x110 [...] RIP: 0010:refcount_warn_saturate+0x9c/0x110 [...] Call Trace: <TASK> smb2_query_info_compound+0x29c/0x5c0 [cifs f90b72658819bd21c94769b6a652029a07a7172f] ? step_into+0x10d/0x690 ? __legitimize_path+0x28/0x60 smb2_queryfs+0x6a/0xf0 [cifs f90b72658819bd21c94769b6a652029a07a7172f] smb311_queryfs+0x12d/0x140 [cifs f90b72658819bd21c94769b6a652029a07a7172f] ? kmem_cache_alloc+0x18a/0x340 ? getname_flags+0x46/0x1e0 cifs_statfs+0x9f/0x2b0 [cifs f90b72658819bd21c94769b6a652029a07a7172f] statfs_by_dentry+0x67/0x90 vfs_statfs+0x16/0xd0 user_statfs+0x54/0xa0 __do_sys_statfs+0x20/0x50 do_syscall_64+0x58/0x80
Затронутые продукты
Ссылки
- CVE-2025-40320
- SUSE Bug 1254793
Описание
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: fix crash while sending Action Frames in standalone AP Mode Currently, whenever there is a need to transmit an Action frame, the brcmfmac driver always uses the P2P vif to send the "actframe" IOVAR to firmware. The P2P interfaces were available when wpa_supplicant is managing the wlan interface. However, the P2P interfaces are not created/initialized when only hostapd is managing the wlan interface. And if hostapd receives an ANQP Query REQ Action frame even from an un-associated STA, the brcmfmac driver tries to use an uninitialized P2P vif pointer for sending the IOVAR to firmware. This NULL pointer dereferencing triggers a driver crash. [ 1417.074538] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [...] [ 1417.075188] Hardware name: Raspberry Pi 4 Model B Rev 1.5 (DT) [...] [ 1417.075653] Call trace: [ 1417.075662] brcmf_p2p_send_action_frame+0x23c/0xc58 [brcmfmac] [ 1417.075738] brcmf_cfg80211_mgmt_tx+0x304/0x5c0 [brcmfmac] [ 1417.075810] cfg80211_mlme_mgmt_tx+0x1b0/0x428 [cfg80211] [ 1417.076067] nl80211_tx_mgmt+0x238/0x388 [cfg80211] [ 1417.076281] genl_family_rcv_msg_doit+0xe0/0x158 [ 1417.076302] genl_rcv_msg+0x220/0x2a0 [ 1417.076317] netlink_rcv_skb+0x68/0x140 [ 1417.076330] genl_rcv+0x40/0x60 [ 1417.076343] netlink_unicast+0x330/0x3b8 [ 1417.076357] netlink_sendmsg+0x19c/0x3f8 [ 1417.076370] __sock_sendmsg+0x64/0xc0 [ 1417.076391] ____sys_sendmsg+0x268/0x2a0 [ 1417.076408] ___sys_sendmsg+0xb8/0x118 [ 1417.076427] __sys_sendmsg+0x90/0xf8 [ 1417.076445] __arm64_sys_sendmsg+0x2c/0x40 [ 1417.076465] invoke_syscall+0x50/0x120 [ 1417.076486] el0_svc_common.constprop.0+0x48/0xf0 [ 1417.076506] do_el0_svc+0x24/0x38 [ 1417.076525] el0_svc+0x30/0x100 [ 1417.076548] el0t_64_sync_handler+0x100/0x130 [ 1417.076569] el0t_64_sync+0x190/0x198 [ 1417.076589] Code: f9401e80 aa1603e2 f9403be1 5280e483 (f9400000) Fix this, by always using the vif corresponding to the wdev on which the Action frame Transmission request was initiated by the userspace. This way, even if P2P vif is not available, the IOVAR is sent to firmware on AP vif and the ANQP Query RESP Action frame is transmitted without crashing the driver. Move init_completion() for "send_af_done" from brcmf_p2p_create_p2pdev() to brcmf_p2p_attach(). Because the former function would not get executed when only hostapd is managing wlan interface, and it is not safe to do reinit_completion() later in brcmf_p2p_tx_action_frame(), without any prior init_completion(). And in the brcmf_p2p_tx_action_frame() function, the condition check for P2P Presence response frame is not needed, since the wpa_supplicant is properly sending the P2P Presense Response frame on the P2P-GO vif instead of the P2P-Device vif. [Cc stable]
Затронутые продукты
Ссылки
- CVE-2025-40321
- SUSE Bug 1254795
Описание
In the Linux kernel, the following vulnerability has been resolved: fbdev: bitblit: bound-check glyph index in bit_putcs* bit_putcs_aligned()/unaligned() derived the glyph pointer from the character value masked by 0xff/0x1ff, which may exceed the actual font's glyph count and read past the end of the built-in font array. Clamp the index to the actual glyph count before computing the address. This fixes a global out-of-bounds read reported by syzbot.
Затронутые продукты
Ссылки
- CVE-2025-40322
- SUSE Bug 1255092
Описание
In the Linux kernel, the following vulnerability has been resolved: fbcon: Set fb_display[i]->mode to NULL when the mode is released Recently, we discovered the following issue through syzkaller: BUG: KASAN: slab-use-after-free in fb_mode_is_equal+0x285/0x2f0 Read of size 4 at addr ff11000001b3c69c by task syz.xxx ... Call Trace: <TASK> dump_stack_lvl+0xab/0xe0 print_address_description.constprop.0+0x2c/0x390 print_report+0xb9/0x280 kasan_report+0xb8/0xf0 fb_mode_is_equal+0x285/0x2f0 fbcon_mode_deleted+0x129/0x180 fb_set_var+0xe7f/0x11d0 do_fb_ioctl+0x6a0/0x750 fb_ioctl+0xe0/0x140 __x64_sys_ioctl+0x193/0x210 do_syscall_64+0x5f/0x9c0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Based on experimentation and analysis, during framebuffer unregistration, only the memory of fb_info->modelist is freed, without setting the corresponding fb_display[i]->mode to NULL for the freed modes. This leads to UAF issues during subsequent accesses. Here's an example of reproduction steps: 1. With /dev/fb0 already registered in the system, load a kernel module to register a new device /dev/fb1; 2. Set fb1's mode to the global fb_display[] array (via FBIOPUT_CON2FBMAP); 3. Switch console from fb to VGA (to allow normal rmmod of the ko); 4. Unload the kernel module, at this point fb1's modelist is freed, leaving a wild pointer in fb_display[]; 5. Trigger the bug via system calls through fb0 attempting to delete a mode from fb0. Add a check in do_unregister_framebuffer(): if the mode to be freed exists in fb_display[], set the corresponding mode pointer to NULL.
Затронутые продукты
Ссылки
- CVE-2025-40323
- SUSE Bug 1255094
Описание
In the Linux kernel, the following vulnerability has been resolved: NFSD: Fix crash in nfsd4_read_release() When tracing is enabled, the trace_nfsd_read_done trace point crashes during the pynfs read.testNoFh test.
Затронутые продукты
Ссылки
- CVE-2025-40324
- SUSE Bug 1254791
Описание
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in smb2_close_cached_fid() find_or_create_cached_dir() could grab a new reference after kref_put() had seen the refcount drop to zero but before cfid_list_lock is acquired in smb2_close_cached_fid(), leading to use-after-free. Switch to kref_put_lock() so cfid_release() is called with cfid_list_lock held, closing that gap.
Затронутые продукты
Ссылки
- CVE-2025-40328
- SUSE Bug 1254624
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/sched: Fix deadlock in drm_sched_entity_kill_jobs_cb The Mesa issue referenced below pointed out a possible deadlock: [ 1231.611031] Possible interrupt unsafe locking scenario: [ 1231.611033] CPU0 CPU1 [ 1231.611034] ---- ---- [ 1231.611035] lock(&xa->xa_lock#17); [ 1231.611038] local_irq_disable(); [ 1231.611039] lock(&fence->lock); [ 1231.611041] lock(&xa->xa_lock#17); [ 1231.611044] <Interrupt> [ 1231.611045] lock(&fence->lock); [ 1231.611047] *** DEADLOCK *** In this example, CPU0 would be any function accessing job->dependencies through the xa_* functions that don't disable interrupts (eg: drm_sched_job_add_dependency(), drm_sched_entity_kill_jobs_cb()). CPU1 is executing drm_sched_entity_kill_jobs_cb() as a fence signalling callback so in an interrupt context. It will deadlock when trying to grab the xa_lock which is already held by CPU0. Replacing all xa_* usage by their xa_*_irq counterparts would fix this issue, but Christian pointed out another issue: dma_fence_signal takes fence.lock and so does dma_fence_add_callback. dma_fence_signal() // locks f1.lock -> drm_sched_entity_kill_jobs_cb() -> foreach dependencies -> dma_fence_add_callback() // locks f2.lock This will deadlock if f1 and f2 share the same spinlock. To fix both issues, the code iterating on dependencies and re-arming them is moved out to drm_sched_entity_kill_jobs_work(). [phasta: commit message nits]
Затронутые продукты
Ссылки
- CVE-2025-40329
- SUSE Bug 1254621
Описание
In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Shutdown FW DMA in bnxt_shutdown() The netif_close() call in bnxt_shutdown() only stops packet DMA. There may be FW DMA for trace logging (recently added) that will continue. If we kexec to a new kernel, the DMA will corrupt memory in the new kernel. Add bnxt_hwrm_func_drv_unrgtr() to unregister the driver from the FW. This will stop the FW DMA. In case the call fails, call pcie_flr() to reset the function and stop the DMA.
Затронутые продукты
Ссылки
- CVE-2025-40330
- SUSE Bug 1254616
Описание
In the Linux kernel, the following vulnerability has been resolved: sctp: Prevent TOCTOU out-of-bounds write For the following path not holding the sock lock, sctp_diag_dump() -> sctp_for_each_endpoint() -> sctp_ep_dump() make sure not to exceed bounds in case the address list has grown between buffer allocation (time-of-check) and write (time-of-use).
Затронутые продукты
Ссылки
- CVE-2025-40331
- SUSE Bug 1254615
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix mmap write lock not release If mmap write lock is taken while draining retry fault, mmap write lock is not released because svm_range_restore_pages calls mmap_read_unlock then returns. This causes deadlock and system hangs later because mmap read or write lock cannot be taken. Downgrade mmap write lock to read lock if draining retry fault fix this bug.
Затронутые продукты
Ссылки
- CVE-2025-40332
- SUSE Bug 1255116
Описание
In the Linux kernel, the following vulnerability has been resolved: net: stmmac: Correctly handle Rx checksum offload errors The stmmac_rx function would previously set skb->ip_summed to CHECKSUM_UNNECESSARY if hardware checksum offload (CoE) was enabled and the packet was of a known IP ethertype. However, this logic failed to check if the hardware had actually reported a checksum error. The hardware status, indicating a header or payload checksum failure, was being ignored at this stage. This could cause corrupt packets to be passed up the network stack as valid. This patch corrects the logic by checking the `csum_none` status flag, which is set when the hardware reports a checksum error. If this flag is set, skb->ip_summed is now correctly set to CHECKSUM_NONE, ensuring the kernel's network stack will perform its own validation and properly handle the corrupt packet.
Затронутые продукты
Ссылки
- CVE-2025-40337
- SUSE Bug 1255081
Описание
In the Linux kernel, the following vulnerability has been resolved: ASoC: Intel: avs: Do not share the name pointer between components By sharing 'name' directly, tearing down components may lead to use-after-free errors. Duplicate the name to avoid that. At the same time, update the order of operations - since commit cee28113db17 ("ASoC: dmaengine_pcm: Allow passing component name via config") the framework does not override component->name if set before invoking the initializer.
Затронутые продукты
Ссылки
- CVE-2025-40338
- SUSE Bug 1255273
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix nullptr err of vm_handle_moved If a amdgpu_bo_va is fpriv->prt_va, the bo of this one is always NULL. So, such kind of amdgpu_bo_va should be updated separately before amdgpu_vm_handle_moved.
Затронутые продукты
Ссылки
- CVE-2025-40339
- SUSE Bug 1255428
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/xe: Fix oops in xe_gem_fault when running core_hotunplug test. I saw an oops in xe_gem_fault when running the xe-fast-feedback testlist against the realtime kernel without debug options enabled. The panic happens after core_hotunplug unbind-rebind finishes. Presumably what happens is that a process mmaps, unlocks because of the FAULT_FLAG_RETRY_NOWAIT logic, has no process memory left, causing ttm_bo_vm_dummy_page() to return VM_FAULT_NOPAGE, since there was nothing left to populate, and then oopses in "mem_type_is_vram(tbo->resource->mem_type)" because tbo->resource is NULL. It's convoluted, but fits the data and explains the oops after the test exits.
Затронутые продукты
Ссылки
- CVE-2025-40340
- SUSE Bug 1254996
Описание
In the Linux kernel, the following vulnerability has been resolved: nvme-fc: use lock accessing port_state and rport state nvme_fc_unregister_remote removes the remote port on a lport object at any point in time when there is no active association. This races with with the reconnect logic, because nvme_fc_create_association is not taking a lock to check the port_state and atomically increase the active count on the rport.
Затронутые продукты
Ссылки
- CVE-2025-40342
- SUSE Bug 1255274
- SUSE Bug 1255275
Описание
In the Linux kernel, the following vulnerability has been resolved: nvmet-fc: avoid scheduling association deletion twice When forcefully shutting down a port via the configfs interface, nvmet_port_subsys_drop_link() first calls nvmet_port_del_ctrls() and then nvmet_disable_port(). Both functions will eventually schedule all remaining associations for deletion. The current implementation checks whether an association is about to be removed, but only after the work item has already been scheduled. As a result, it is possible for the first scheduled work item to free all resources, and then for the same work item to be scheduled again for deletion. Because the association list is an RCU list, it is not possible to take a lock and remove the list entry directly, so it cannot be looked up again. Instead, a flag (terminating) must be used to determine whether the association is already in the process of being deleted.
Затронутые продукты
Ссылки
- CVE-2025-40343
- SUSE Bug 1255276
- SUSE Bug 1255278
Описание
In the Linux kernel, the following vulnerability has been resolved: ASoC: Intel: avs: Disable periods-elapsed work when closing PCM avs_dai_fe_shutdown() handles the shutdown procedure for HOST HDAudio stream while period-elapsed work services its IRQs. As the former frees the DAI's private context, these two operations shall be synchronized to avoid slab-use-after-free or worse errors.
Затронутые продукты
Ссылки
- CVE-2025-40344
- SUSE Bug 1254618
Описание
In the Linux kernel, the following vulnerability has been resolved: usb: storage: sddr55: Reject out-of-bound new_pba Discovered by Atuin - Automated Vulnerability Discovery Engine. new_pba comes from the status packet returned after each write. A bogus device could report values beyond the block count derived from info->capacity, letting the driver walk off the end of pba_to_lba[] and corrupt heap memory. Reject PBAs that exceed the computed block count and fail the transfer so we avoid touching out-of-range mapping entries.
Затронутые продукты
Ссылки
- CVE-2025-40345
- SUSE Bug 1255279
Описание
In the Linux kernel, the following vulnerability has been resolved: arch_topology: Fix incorrect error check in topology_parse_cpu_capacity() Fix incorrect use of PTR_ERR_OR_ZERO() in topology_parse_cpu_capacity() which causes the code to proceed with NULL clock pointers. The current logic uses !PTR_ERR_OR_ZERO(cpu_clk) which evaluates to true for both valid pointers and NULL, leading to potential NULL pointer dereference in clk_get_rate(). Per include/linux/err.h documentation, PTR_ERR_OR_ZERO(ptr) returns: "The error code within @ptr if it is an error pointer; 0 otherwise." This means PTR_ERR_OR_ZERO() returns 0 for both valid pointers AND NULL pointers. Therefore !PTR_ERR_OR_ZERO(cpu_clk) evaluates to true (proceed) when cpu_clk is either valid or NULL, causing clk_get_rate(NULL) to be called when of_clk_get() returns NULL. Replace with !IS_ERR_OR_NULL(cpu_clk) which only proceeds for valid pointers, preventing potential NULL pointer dereference in clk_get_rate().
Затронутые продукты
Ссылки
- CVE-2025-40346
- SUSE Bug 1255318
Описание
In the Linux kernel, the following vulnerability has been resolved: net: enetc: fix the deadlock of enetc_mdio_lock After applying the workaround for err050089, the LS1028A platform experiences RCU stalls on RT kernel. This issue is caused by the recursive acquisition of the read lock enetc_mdio_lock. Here list some of the call stacks identified under the enetc_poll path that may lead to a deadlock: enetc_poll -> enetc_lock_mdio -> enetc_clean_rx_ring OR napi_complete_done -> napi_gro_receive -> enetc_start_xmit -> enetc_lock_mdio -> enetc_map_tx_buffs -> enetc_unlock_mdio -> enetc_unlock_mdio After enetc_poll acquires the read lock, a higher-priority writer attempts to acquire the lock, causing preemption. The writer detects that a read lock is already held and is scheduled out. However, readers under enetc_poll cannot acquire the read lock again because a writer is already waiting, leading to a thread hang. Currently, the deadlock is avoided by adjusting enetc_lock_mdio to prevent recursive lock acquisition.
Затронутые продукты
Ссылки
- CVE-2025-40347
- SUSE Bug 1255262
Описание
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: RX, Fix generating skb from non-linear xdp_buff for striding RQ XDP programs can change the layout of an xdp_buff through bpf_xdp_adjust_tail() and bpf_xdp_adjust_head(). Therefore, the driver cannot assume the size of the linear data area nor fragments. Fix the bug in mlx5 by generating skb according to xdp_buff after XDP programs run. Currently, when handling multi-buf XDP, the mlx5 driver assumes the layout of an xdp_buff to be unchanged. That is, the linear data area continues to be empty and fragments remain the same. This may cause the driver to generate erroneous skb or triggering a kernel warning. When an XDP program added linear data through bpf_xdp_adjust_head(), the linear data will be ignored as mlx5e_build_linear_skb() builds an skb without linear data and then pull data from fragments to fill the linear data area. When an XDP program has shrunk the non-linear data through bpf_xdp_adjust_tail(), the delta passed to __pskb_pull_tail() may exceed the actual nonlinear data size and trigger the BUG_ON in it. To fix the issue, first record the original number of fragments. If the number of fragments changes after the XDP program runs, rewind the end fragment pointer by the difference and recalculate the truesize. Then, build the skb with the linear data area matching the xdp_buff. Finally, only pull data in if there is non-linear data and fill the linear part up to 256 bytes.
Затронутые продукты
Ссылки
- CVE-2025-40350
- SUSE Bug 1255260
Описание
In the Linux kernel, the following vulnerability has been resolved: arm64: mte: Do not warn if the page is already tagged in copy_highpage() The arm64 copy_highpage() assumes that the destination page is newly allocated and not MTE-tagged (PG_mte_tagged unset) and warns accordingly. However, following commit 060913999d7a ("mm: migrate: support poisoned recover from migrate folio"), folio_mc_copy() is called before __folio_migrate_mapping(). If the latter fails (-EAGAIN), the copy will be done again to the same destination page. Since copy_highpage() already set the PG_mte_tagged flag, this second copy will warn. Replace the WARN_ON_ONCE(page already tagged) in the arm64 copy_highpage() with a comment.
Затронутые продукты
Ссылки
- CVE-2025-40353
- SUSE Bug 1255312
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: increase max link count and fix link->enc NULL pointer access [why] 1.) dc->links[MAX_LINKS] array size smaller than actual requested. max_connector + max_dpia + 4 virtual = 14. increase from 12 to 14. 2.) hw_init() access null LINK_ENC for dpia non display_endpoint. (cherry picked from commit d7f5a61e1b04ed87b008c8d327649d184dc5bb45)
Затронутые продукты
Ссылки
- CVE-2025-40354
- SUSE Bug 1255316
Описание
In the Linux kernel, the following vulnerability has been resolved: sysfs: check visibility before changing group attribute ownership Since commit 0c17270f9b92 ("net: sysfs: Implement is_visible for phys_(port_id, port_name, switch_id)"), __dev_change_net_namespace() can hit WARN_ON() when trying to change owner of a file that isn't visible. See the trace below: WARNING: CPU: 6 PID: 2938 at net/core/dev.c:12410 __dev_change_net_namespace+0xb89/0xc30 CPU: 6 UID: 0 PID: 2938 Comm: incusd Not tainted 6.17.1-1-mainline #1 PREEMPT(full) 4b783b4a638669fb644857f484487d17cb45ed1f Hardware name: Framework Laptop 13 (AMD Ryzen 7040Series)/FRANMDCP07, BIOS 03.07 02/19/2025 RIP: 0010:__dev_change_net_namespace+0xb89/0xc30 [...] Call Trace: <TASK> ? if6_seq_show+0x30/0x50 do_setlink.isra.0+0xc7/0x1270 ? __nla_validate_parse+0x5c/0xcc0 ? security_capable+0x94/0x1a0 rtnl_newlink+0x858/0xc20 ? update_curr+0x8e/0x1c0 ? update_entity_lag+0x71/0x80 ? sched_balance_newidle+0x358/0x450 ? psi_task_switch+0x113/0x2a0 ? __pfx_rtnl_newlink+0x10/0x10 rtnetlink_rcv_msg+0x346/0x3e0 ? sched_clock+0x10/0x30 ? __pfx_rtnetlink_rcv_msg+0x10/0x10 netlink_rcv_skb+0x59/0x110 netlink_unicast+0x285/0x3c0 ? __alloc_skb+0xdb/0x1a0 netlink_sendmsg+0x20d/0x430 ____sys_sendmsg+0x39f/0x3d0 ? import_iovec+0x2f/0x40 ___sys_sendmsg+0x99/0xe0 __sys_sendmsg+0x8a/0xf0 do_syscall_64+0x81/0x970 ? __sys_bind+0xe3/0x110 ? syscall_exit_work+0x143/0x1b0 ? do_syscall_64+0x244/0x970 ? sock_alloc_file+0x63/0xc0 ? syscall_exit_work+0x143/0x1b0 ? do_syscall_64+0x244/0x970 ? alloc_fd+0x12e/0x190 ? put_unused_fd+0x2a/0x70 ? do_sys_openat2+0xa2/0xe0 ? syscall_exit_work+0x143/0x1b0 ? do_syscall_64+0x244/0x970 ? exc_page_fault+0x7e/0x1a0 entry_SYSCALL_64_after_hwframe+0x76/0x7e [...] </TASK> Fix this by checking is_visible() before trying to touch the attribute.
Затронутые продукты
Ссылки
- CVE-2025-40355
- SUSE Bug 1255261
Описание
In the Linux kernel, the following vulnerability has been resolved: net/smc: fix general protection fault in __smc_diag_dump The syzbot report a crash: Oops: general protection fault, probably for non-canonical address 0xfbd5a5d5a0000003: 0000 [#1] SMP KASAN NOPTI KASAN: maybe wild-memory-access in range [0xdead4ead00000018-0xdead4ead0000001f] CPU: 1 UID: 0 PID: 6949 Comm: syz.0.335 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 08/18/2025 RIP: 0010:smc_diag_msg_common_fill net/smc/smc_diag.c:44 [inline] RIP: 0010:__smc_diag_dump.constprop.0+0x3ca/0x2550 net/smc/smc_diag.c:89 Call Trace: <TASK> smc_diag_dump_proto+0x26d/0x420 net/smc/smc_diag.c:217 smc_diag_dump+0x27/0x90 net/smc/smc_diag.c:234 netlink_dump+0x539/0xd30 net/netlink/af_netlink.c:2327 __netlink_dump_start+0x6d6/0x990 net/netlink/af_netlink.c:2442 netlink_dump_start include/linux/netlink.h:341 [inline] smc_diag_handler_dump+0x1f9/0x240 net/smc/smc_diag.c:251 __sock_diag_cmd net/core/sock_diag.c:249 [inline] sock_diag_rcv_msg+0x438/0x790 net/core/sock_diag.c:285 netlink_rcv_skb+0x158/0x420 net/netlink/af_netlink.c:2552 netlink_unicast_kernel net/netlink/af_netlink.c:1320 [inline] netlink_unicast+0x5a7/0x870 net/netlink/af_netlink.c:1346 netlink_sendmsg+0x8d1/0xdd0 net/netlink/af_netlink.c:1896 sock_sendmsg_nosec net/socket.c:714 [inline] __sock_sendmsg net/socket.c:729 [inline] ____sys_sendmsg+0xa95/0xc70 net/socket.c:2614 ___sys_sendmsg+0x134/0x1d0 net/socket.c:2668 __sys_sendmsg+0x16d/0x220 net/socket.c:2700 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0x4e0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f </TASK> The process like this: (CPU1) | (CPU2) ---------------------------------|------------------------------- inet_create() | // init clcsock to NULL | sk = sk_alloc() | | // unexpectedly change clcsock | inet_init_csk_locks() | | // add sk to hash table | smc_inet_init_sock() | smc_sk_init() | smc_hash_sk() | | // traverse the hash table | smc_diag_dump_proto | __smc_diag_dump() | // visit wrong clcsock | smc_diag_msg_common_fill() // alloc clcsock | smc_create_clcsk | sock_create_kern | With CONFIG_DEBUG_LOCK_ALLOC=y, the smc->clcsock is unexpectedly changed in inet_init_csk_locks(). The INET_PROTOSW_ICSK flag is no need by smc, just remove it. After removing the INET_PROTOSW_ICSK flag, this patch alse revert commit 6fd27ea183c2 ("net/smc: fix lacks of icsk_syn_mss with IPPROTO_SMC") to avoid casting smc_sock to inet_connection_sock.
Затронутые продукты
Ссылки
- CVE-2025-40357
- SUSE Bug 1255097
Описание
In the Linux kernel, the following vulnerability has been resolved: perf/x86/intel: Fix KASAN global-out-of-bounds warning When running "perf mem record" command on CWF, the below KASAN global-out-of-bounds warning is seen. ================================================================== BUG: KASAN: global-out-of-bounds in cmt_latency_data+0x176/0x1b0 Read of size 4 at addr ffffffffb721d000 by task dtlb/9850 Call Trace: kasan_report+0xb8/0xf0 cmt_latency_data+0x176/0x1b0 setup_arch_pebs_sample_data+0xf49/0x2560 intel_pmu_drain_arch_pebs+0x577/0xb00 handle_pmi_common+0x6c4/0xc80 The issue is caused by below code in __grt_latency_data(). The code tries to access x86_hybrid_pmu structure which doesn't exist on non-hybrid platform like CWF. WARN_ON_ONCE(hybrid_pmu(event->pmu)->pmu_type == hybrid_big) So add is_hybrid() check before calling this WARN_ON_ONCE to fix the global-out-of-bounds access issue.
Затронутые продукты
Ссылки
- CVE-2025-40359
- SUSE Bug 1255087
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/sysfb: Do not dereference NULL pointer in plane reset The plane state in __drm_gem_reset_shadow_plane() can be NULL. Do not deref that pointer, but forward NULL to the other plane-reset helpers. Clears plane->state to NULL. v2: - fix typo in commit description (Javier)
Затронутые продукты
Ссылки
- CVE-2025-40360
- SUSE Bug 1255095
Описание
In the Linux kernel, the following vulnerability has been resolved: ceph: fix multifs mds auth caps issue The mds auth caps check should also validate the fsname along with the associated caps. Not doing so would result in applying the mds auth caps of one fs on to the other fs in a multifs ceph cluster. The bug causes multiple issues w.r.t user authentication, following is one such example. Steps to Reproduce (on vstart cluster): 1. Create two file systems in a cluster, say 'fsname1' and 'fsname2' 2. Authorize read only permission to the user 'client.usr' on fs 'fsname1' $ceph fs authorize fsname1 client.usr / r 3. Authorize read and write permission to the same user 'client.usr' on fs 'fsname2' $ceph fs authorize fsname2 client.usr / rw 4. Update the keyring $ceph auth get client.usr >> ./keyring With above permssions for the user 'client.usr', following is the expectation. a. The 'client.usr' should be able to only read the contents and not allowed to create or delete files on file system 'fsname1'. b. The 'client.usr' should be able to read/write on file system 'fsname2'. But, with this bug, the 'client.usr' is allowed to read/write on file system 'fsname1'. See below. 5. Mount the file system 'fsname1' with the user 'client.usr' $sudo bin/mount.ceph usr@.fsname1=/ /kmnt_fsname1_usr/ 6. Try creating a file on file system 'fsname1' with user 'client.usr'. This should fail but passes with this bug. $touch /kmnt_fsname1_usr/file1 7. Mount the file system 'fsname1' with the user 'client.admin' and create a file. $sudo bin/mount.ceph admin@.fsname1=/ /kmnt_fsname1_admin $echo "data" > /kmnt_fsname1_admin/admin_file1 8. Try removing an existing file on file system 'fsname1' with the user 'client.usr'. This shoudn't succeed but succeeds with the bug. $rm -f /kmnt_fsname1_usr/admin_file1 For more information, please take a look at the corresponding mds/fuse patch and tests added by looking into the tracker mentioned below. v2: Fix a possible null dereference in doutc v3: Don't store fsname from mdsmap, validate against ceph_mount_options's fsname and use it v4: Code refactor, better warning message and fix possible compiler warning [ Slava.Dubeyko: "fsname check failed" -> "fsname mismatch" ]
Затронутые продукты
Ссылки
- CVE-2025-40362
- SUSE Bug 1255103
- SUSE Bug 1255104
Описание
In the Linux kernel, the following vulnerability has been resolved: gpiolib: fix invalid pointer access in debugfs If the memory allocation in gpiolib_seq_start() fails, the s->private field remains uninitialized and is later dereferenced without checking in gpiolib_seq_stop(). Initialize s->private to NULL before calling kzalloc() and check it before dereferencing it.
Затронутые продукты
Ссылки
- CVE-2025-68167
- SUSE Bug 1255099
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: Do not kfree() devres managed rdev Since the allocation of the drivers main structure was changed to devm_drm_dev_alloc() rdev is managed by devres and we shouldn't be calling kfree() on it. This fixes things exploding if the driver probe fails and devres cleans up the rdev after we already free'd it. (cherry picked from commit 16c0681617b8a045773d4d87b6140002fa75b03b)
Затронутые продукты
Ссылки
- CVE-2025-68170
- SUSE Bug 1255256
Описание
In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Ensure XFD state on signal delivery Sean reported [1] the following splat when running KVM tests: WARNING: CPU: 232 PID: 15391 at xfd_validate_state+0x65/0x70 Call Trace: <TASK> fpu__clear_user_states+0x9c/0x100 arch_do_signal_or_restart+0x142/0x210 exit_to_user_mode_loop+0x55/0x100 do_syscall_64+0x205/0x2c0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Chao further identified [2] a reproducible scenario involving signal delivery: a non-AMX task is preempted by an AMX-enabled task which modifies the XFD MSR. When the non-AMX task resumes and reloads XSTATE with init values, a warning is triggered due to a mismatch between fpstate::xfd and the CPU's current XFD state. fpu__clear_user_states() does not currently re-synchronize the XFD state after such preemption. Invoke xfd_update_state() which detects and corrects the mismatch if there is a dynamic feature. This also benefits the sigreturn path, as fpu__restore_sig() may call fpu__clear_user_states() when the sigframe is inaccessible. [ dhansen: minor changelog munging ]
Затронутые продукты
Ссылки
- CVE-2025-68171
- SUSE Bug 1255255
Описание
In the Linux kernel, the following vulnerability has been resolved: crypto: aspeed - fix double free caused by devm The clock obtained via devm_clk_get_enabled() is automatically managed by devres and will be disabled and freed on driver detach. Manually calling clk_disable_unprepare() in error path and remove function causes double free. Remove the manual clock cleanup in both aspeed_acry_probe()'s error path and aspeed_acry_remove().
Затронутые продукты
Ссылки
- CVE-2025-68172
- SUSE Bug 1255253
Описание
In the Linux kernel, the following vulnerability has been resolved: PCI: cadence: Check for the existence of cdns_pcie::ops before using it cdns_pcie::ops might not be populated by all the Cadence glue drivers. This is going to be true for the upcoming Sophgo platform which doesn't set the ops. Hence, add a check to prevent NULL pointer dereference. [mani: reworded subject and description]
Затронутые продукты
Ссылки
- CVE-2025-68176
- SUSE Bug 1255329
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix NULL deref in debugfs odm_combine_segments When a connector is connected but inactive (e.g., disabled by desktop environments), pipe_ctx->stream_res.tg will be destroyed. Then, reading odm_combine_segments causes kernel NULL pointer dereference. BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 16 UID: 0 PID: 26474 Comm: cat Not tainted 6.17.0+ #2 PREEMPT(lazy) e6a17af9ee6db7c63e9d90dbe5b28ccab67520c6 Hardware name: LENOVO 21Q4/LNVNB161216, BIOS PXCN25WW 03/27/2025 RIP: 0010:odm_combine_segments_show+0x93/0xf0 [amdgpu] Code: 41 83 b8 b0 00 00 00 01 75 6e 48 98 ba a1 ff ff ff 48 c1 e0 0c 48 8d 8c 07 d8 02 00 00 48 85 c9 74 2d 48 8b bc 07 f0 08 00 00 <48> 8b 07 48 8b 80 08 02 00> RSP: 0018:ffffd1bf4b953c58 EFLAGS: 00010286 RAX: 0000000000005000 RBX: ffff8e35976b02d0 RCX: ffff8e3aeed052d8 RDX: 00000000ffffffa1 RSI: ffff8e35a3120800 RDI: 0000000000000000 RBP: 0000000000000000 R08: ffff8e3580eb0000 R09: ffff8e35976b02d0 R10: ffffd1bf4b953c78 R11: 0000000000000000 R12: ffffd1bf4b953d08 R13: 0000000000040000 R14: 0000000000000001 R15: 0000000000000001 FS: 00007f44d3f9f740(0000) GS:ffff8e3caa47f000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 00000006485c2000 CR4: 0000000000f50ef0 PKRU: 55555554 Call Trace: <TASK> seq_read_iter+0x125/0x490 ? __alloc_frozen_pages_noprof+0x18f/0x350 seq_read+0x12c/0x170 full_proxy_read+0x51/0x80 vfs_read+0xbc/0x390 ? __handle_mm_fault+0xa46/0xef0 ? do_syscall_64+0x71/0x900 ksys_read+0x73/0xf0 do_syscall_64+0x71/0x900 ? count_memcg_events+0xc2/0x190 ? handle_mm_fault+0x1d7/0x2d0 ? do_user_addr_fault+0x21a/0x690 ? exc_page_fault+0x7e/0x1a0 entry_SYSCALL_64_after_hwframe+0x6c/0x74 RIP: 0033:0x7f44d4031687 Code: 48 89 fa 4c 89 df e8 58 b3 00 00 8b 93 08 03 00 00 59 5e 48 83 f8 fc 74 1a 5b c3 0f 1f 84 00 00 00 00 00 48 8b 44 24 10 0f 05 <5b> c3 0f 1f 80 00 00 00 00> RSP: 002b:00007ffdb4b5f0b0 EFLAGS: 00000202 ORIG_RAX: 0000000000000000 RAX: ffffffffffffffda RBX: 00007f44d3f9f740 RCX: 00007f44d4031687 RDX: 0000000000040000 RSI: 00007f44d3f5e000 RDI: 0000000000000003 RBP: 0000000000040000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000202 R12: 00007f44d3f5e000 R13: 0000000000000003 R14: 0000000000000000 R15: 0000000000040000 </TASK> Modules linked in: tls tcp_diag inet_diag xt_mark ccm snd_hrtimer snd_seq_dummy snd_seq_midi snd_seq_oss snd_seq_midi_event snd_rawmidi snd_seq snd_seq_device x> snd_hda_codec_atihdmi snd_hda_codec_realtek_lib lenovo_wmi_helpers think_lmi snd_hda_codec_generic snd_hda_codec_hdmi snd_soc_core kvm snd_compress uvcvideo sn> platform_profile joydev amd_pmc mousedev mac_hid sch_fq_codel uinput i2c_dev parport_pc ppdev lp parport nvme_fabrics loop nfnetlink ip_tables x_tables dm_cryp> CR2: 0000000000000000 ---[ end trace 0000000000000000 ]--- RIP: 0010:odm_combine_segments_show+0x93/0xf0 [amdgpu] Code: 41 83 b8 b0 00 00 00 01 75 6e 48 98 ba a1 ff ff ff 48 c1 e0 0c 48 8d 8c 07 d8 02 00 00 48 85 c9 74 2d 48 8b bc 07 f0 08 00 00 <48> 8b 07 48 8b 80 08 02 00> RSP: 0018:ffffd1bf4b953c58 EFLAGS: 00010286 RAX: 0000000000005000 RBX: ffff8e35976b02d0 RCX: ffff8e3aeed052d8 RDX: 00000000ffffffa1 RSI: ffff8e35a3120800 RDI: 0000000000000000 RBP: 0000000000000000 R08: ffff8e3580eb0000 R09: ffff8e35976b02d0 R10: ffffd1bf4b953c78 R11: 0000000000000000 R12: ffffd1bf4b953d08 R13: 0000000000040000 R14: 0000000000000001 R15: 0000000000000001 FS: 00007f44d3f9f740(0000) GS:ffff8e3caa47f000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 00000006485c2000 CR4: 0000000000f50ef0 PKRU: 55555554 Fix this by checking pipe_ctx-> ---truncated---
Затронутые продукты
Ссылки
- CVE-2025-68180
- SUSE Bug 1255252
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: Remove calls to drm_put_dev() Since the allocation of the drivers main structure was changed to devm_drm_dev_alloc() drm_put_dev()'ing to trigger it to be free'd should be done by devres. However, drm_put_dev() is still in the probe error and device remove paths. When the driver fails to probe warnings like the following are shown because devres is trying to drm_put_dev() after the driver already did it. [ 5.642230] radeon 0000:01:05.0: probe with driver radeon failed with error -22 [ 5.649605] ------------[ cut here ]------------ [ 5.649607] refcount_t: underflow; use-after-free. [ 5.649620] WARNING: CPU: 0 PID: 357 at lib/refcount.c:28 refcount_warn_saturate+0xbe/0x110 (cherry picked from commit 3eb8c0b4c091da0a623ade0d3ee7aa4a93df1ea4)
Затронутые продукты
Ссылки
- CVE-2025-68181
- SUSE Bug 1255247
Описание
In the Linux kernel, the following vulnerability has been resolved: ima: don't clear IMA_DIGSIG flag when setting or removing non-IMA xattr Currently when both IMA and EVM are in fix mode, the IMA signature will be reset to IMA hash if a program first stores IMA signature in security.ima and then writes/removes some other security xattr for the file. For example, on Fedora, after booting the kernel with "ima_appraise=fix evm=fix ima_policy=appraise_tcb" and installing rpm-plugin-ima, installing/reinstalling a package will not make good reference IMA signature generated. Instead IMA hash is generated, # getfattr -m - -d -e hex /usr/bin/bash # file: usr/bin/bash security.ima=0x0404... This happens because when setting security.selinux, the IMA_DIGSIG flag that had been set early was cleared. As a result, IMA hash is generated when the file is closed. Similarly, IMA signature can be cleared on file close after removing security xattr like security.evm or setting/removing ACL. Prevent replacing the IMA file signature with a file hash, by preventing the IMA_DIGSIG flag from being reset. Here's a minimal C reproducer which sets security.selinux as the last step which can also replaced by removing security.evm or setting ACL, #include <stdio.h> #include <sys/xattr.h> #include <fcntl.h> #include <unistd.h> #include <string.h> #include <stdlib.h> int main() { const char* file_path = "/usr/sbin/test_binary"; const char* hex_string = "030204d33204490066306402304"; int length = strlen(hex_string); char* ima_attr_value; int fd; fd = open(file_path, O_WRONLY|O_CREAT|O_EXCL, 0644); if (fd == -1) { perror("Error opening file"); return 1; } ima_attr_value = (char*)malloc(length / 2 ); for (int i = 0, j = 0; i < length; i += 2, j++) { sscanf(hex_string + i, "%2hhx", &ima_attr_value[j]); } if (fsetxattr(fd, "security.ima", ima_attr_value, length/2, 0) == -1) { perror("Error setting extended attribute"); close(fd); return 1; } const char* selinux_value= "system_u:object_r:bin_t:s0"; if (fsetxattr(fd, "security.selinux", selinux_value, strlen(selinux_value), 0) == -1) { perror("Error setting extended attribute"); close(fd); return 1; } close(fd); return 0; }
Затронутые продукты
Ссылки
- CVE-2025-68183
- SUSE Bug 1255251
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Disable AFBC support on Mediatek DRM driver Commit c410fa9b07c3 ("drm/mediatek: Add AFBC support to Mediatek DRM driver") added AFBC support to Mediatek DRM and enabled the 32x8/split/sparse modifier. However, this is currently broken on Mediatek MT8188 (Genio 700 EVK platform); tested using upstream Kernel and Mesa (v25.2.1), AFBC is used by default since Mesa v25.0. Kernel trace reports vblank timeouts constantly, and the render is garbled: ``` [CRTC:62:crtc-0] vblank wait timed out WARNING: CPU: 7 PID: 70 at drivers/gpu/drm/drm_atomic_helper.c:1835 drm_atomic_helper_wait_for_vblanks.part.0+0x24c/0x27c [...] Hardware name: MediaTek Genio-700 EVK (DT) Workqueue: events_unbound commit_work pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : drm_atomic_helper_wait_for_vblanks.part.0+0x24c/0x27c lr : drm_atomic_helper_wait_for_vblanks.part.0+0x24c/0x27c sp : ffff80008337bca0 x29: ffff80008337bcd0 x28: 0000000000000061 x27: 0000000000000000 x26: 0000000000000001 x25: 0000000000000000 x24: ffff0000c9dcc000 x23: 0000000000000001 x22: 0000000000000000 x21: ffff0000c66f2f80 x20: ffff0000c0d7d880 x19: 0000000000000000 x18: 000000000000000a x17: 000000040044ffff x16: 005000f2b5503510 x15: 0000000000000000 x14: 0000000000000000 x13: 74756f2064656d69 x12: 742074696177206b x11: 0000000000000058 x10: 0000000000000018 x9 : ffff800082396a70 x8 : 0000000000057fa8 x7 : 0000000000000cce x6 : ffff8000823eea70 x5 : ffff0001fef5f408 x4 : ffff80017ccee000 x3 : ffff0000c12cb480 x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0000c12cb480 Call trace: drm_atomic_helper_wait_for_vblanks.part.0+0x24c/0x27c (P) drm_atomic_helper_commit_tail_rpm+0x64/0x80 commit_tail+0xa4/0x1a4 commit_work+0x14/0x20 process_one_work+0x150/0x290 worker_thread+0x2d0/0x3ec kthread+0x12c/0x210 ret_from_fork+0x10/0x20 ---[ end trace 0000000000000000 ]--- ``` Until this gets fixed upstream, disable AFBC support on this platform, as it's currently broken with upstream Mesa.
Затронутые продукты
Ссылки
- CVE-2025-68184
- SUSE Bug 1255220
Описание
In the Linux kernel, the following vulnerability has been resolved: nfs4_setup_readdir(): insufficient locking for ->d_parent->d_inode dereferencing Theoretically it's an oopsable race, but I don't believe one can manage to hit it on real hardware; might become doable on a KVM, but it still won't be easy to attack. Anyway, it's easy to deal with - since xdr_encode_hyper() is just a call of put_unaligned_be64(), we can put that under ->d_lock and be done with that.
Затронутые продукты
Ссылки
- CVE-2025-68185
- SUSE Bug 1255135
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/atom: Check kcalloc() for WS buffer in amdgpu_atom_execute_table_locked() kcalloc() may fail. When WS is non-zero and allocation fails, ectx.ws remains NULL while ectx.ws_size is set, leading to a potential NULL pointer dereference in atom_get_src_int() when accessing WS entries. Return -ENOMEM on allocation failure to avoid the NULL dereference.
Затронутые продукты
Ссылки
- CVE-2025-68190
- SUSE Bug 1255131
Описание
In the Linux kernel, the following vulnerability has been resolved: net: usb: qmi_wwan: initialize MAC header offset in qmimux_rx_fixup Raw IP packets have no MAC header, leaving skb->mac_header uninitialized. This can trigger kernel panics on ARM64 when xfrm or other subsystems access the offset due to strict alignment checks. Initialize the MAC header to prevent such crashes. This can trigger kernel panics on ARM when running IPsec over the qmimux0 interface. Example trace: Internal error: Oops: 000000009600004f [#1] SMP CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.12.34-gbe78e49cb433 #1 Hardware name: LS1028A RDB Board (DT) pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : xfrm_input+0xde8/0x1318 lr : xfrm_input+0x61c/0x1318 sp : ffff800080003b20 Call trace: xfrm_input+0xde8/0x1318 xfrm6_rcv+0x38/0x44 xfrm6_esp_rcv+0x48/0xa8 ip6_protocol_deliver_rcu+0x94/0x4b0 ip6_input_finish+0x44/0x70 ip6_input+0x44/0xc0 ipv6_rcv+0x6c/0x114 __netif_receive_skb_one_core+0x5c/0x8c __netif_receive_skb+0x18/0x60 process_backlog+0x78/0x17c __napi_poll+0x38/0x180 net_rx_action+0x168/0x2f0
Затронутые продукты
Ссылки
- CVE-2025-68192
- SUSE Bug 1255246
Описание
In the Linux kernel, the following vulnerability has been resolved: media: imon: make send_packet() more robust syzbot is reporting that imon has three problems which result in hung tasks due to forever holding device lock [1]. First problem is that when usb_rx_callback_intf0() once got -EPROTO error after ictx->dev_present_intf0 became true, usb_rx_callback_intf0() resubmits urb after printk(), and resubmitted urb causes usb_rx_callback_intf0() to again get -EPROTO error. This results in printk() flooding (RCU stalls). Alan Stern commented [2] that In theory it's okay to resubmit _if_ the driver has a robust error-recovery scheme (such as giving up after some fixed limit on the number of errors or after some fixed time has elapsed, perhaps with a time delay to prevent a flood of errors). Most drivers don't bother to do this; they simply give up right away. This makes them more vulnerable to short-term noise interference during USB transfers, but in reality such interference is quite rare. There's nothing really wrong with giving up right away. but imon has a poor error-recovery scheme which just retries forever; this behavior should be fixed. Since I'm not sure whether it is safe for imon users to give up upon any error code, this patch takes care of only union of error codes chosen from modules in drivers/media/rc/ directory which handle -EPROTO error (i.e. ir_toy, mceusb and igorplugusb). Second problem is that when usb_rx_callback_intf0() once got -EPROTO error before ictx->dev_present_intf0 becomes true, usb_rx_callback_intf0() always resubmits urb due to commit 8791d63af0cf ("[media] imon: don't wedge hardware after early callbacks"). Move the ictx->dev_present_intf0 test introduced by commit 6f6b90c9231a ("[media] imon: don't parse scancodes until intf configured") to immediately before imon_incoming_packet(), or the first problem explained above happens without printk() flooding (i.e. hung task). Third problem is that when usb_rx_callback_intf0() is not called for some reason (e.g. flaky hardware; the reproducer for this problem sometimes prevents usb_rx_callback_intf0() from being called), wait_for_completion_interruptible() in send_packet() never returns (i.e. hung task). As a workaround for such situation, change send_packet() to wait for completion with timeout of 10 seconds.
Затронутые продукты
Ссылки
- CVE-2025-68194
- SUSE Bug 1255325
Описание
In the Linux kernel, the following vulnerability has been resolved: x86/CPU/AMD: Add missing terminator for zen5_rdseed_microcode Running x86_match_min_microcode_rev() on a Zen5 CPU trips up KASAN for an out of bounds access.
Затронутые продукты
Ссылки
- CVE-2025-68195
- SUSE Bug 1255259
Описание
In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Fix null pointer dereference in bnxt_bs_trace_check_wrap() With older FW, we may get the ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER for FW trace data type that has not been initialized. This will result in a crash in bnxt_bs_trace_type_wrap(). Add a guard to check for a valid magic_byte pointer before proceeding.
Затронутые продукты
Ссылки
- CVE-2025-68197
- SUSE Bug 1255242
Описание
In the Linux kernel, the following vulnerability has been resolved: crash: fix crashkernel resource shrink When crashkernel is configured with a high reservation, shrinking its value below the low crashkernel reservation causes two issues: 1. Invalid crashkernel resource objects 2. Kernel crash if crashkernel shrinking is done twice For example, with crashkernel=200M,high, the kernel reserves 200MB of high memory and some default low memory (say 256MB). The reservation appears as: cat /proc/iomem | grep -i crash af000000-beffffff : Crash kernel 433000000-43f7fffff : Crash kernel If crashkernel is then shrunk to 50MB (echo 52428800 > /sys/kernel/kexec_crash_size), /proc/iomem still shows 256MB reserved: af000000-beffffff : Crash kernel Instead, it should show 50MB: af000000-b21fffff : Crash kernel Further shrinking crashkernel to 40MB causes a kernel crash with the following trace (x86): BUG: kernel NULL pointer dereference, address: 0000000000000038 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI <snip...> Call Trace: <TASK> ? __die_body.cold+0x19/0x27 ? page_fault_oops+0x15a/0x2f0 ? search_module_extables+0x19/0x60 ? search_bpf_extables+0x5f/0x80 ? exc_page_fault+0x7e/0x180 ? asm_exc_page_fault+0x26/0x30 ? __release_resource+0xd/0xb0 release_resource+0x26/0x40 __crash_shrink_memory+0xe5/0x110 crash_shrink_memory+0x12a/0x190 kexec_crash_size_store+0x41/0x80 kernfs_fop_write_iter+0x141/0x1f0 vfs_write+0x294/0x460 ksys_write+0x6d/0xf0 <snip...> This happens because __crash_shrink_memory()/kernel/crash_core.c incorrectly updates the crashk_res resource object even when crashk_low_res should be updated. Fix this by ensuring the correct crashkernel resource object is updated when shrinking crashkernel memory.
Затронутые продукты
Ссылки
- CVE-2025-68198
- SUSE Bug 1255243
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: remove two invalid BUG_ON()s Those can be triggered trivially by userspace.
Затронутые продукты
Ссылки
- CVE-2025-68201
- SUSE Bug 1255136
Описание
In the Linux kernel, the following vulnerability has been resolved: sched_ext: Fix unsafe locking in the scx_dump_state() For built with CONFIG_PREEMPT_RT=y kernels, the dump_lock will be converted sleepable spinlock and not disable-irq, so the following scenarios occur: inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage. irq_work/0/27 [HC0[0]:SC0[0]:HE1:SE1] takes: (&rq->__lock){?...}-{2:2}, at: raw_spin_rq_lock_nested+0x2b/0x40 {IN-HARDIRQ-W} state was registered at: lock_acquire+0x1e1/0x510 _raw_spin_lock_nested+0x42/0x80 raw_spin_rq_lock_nested+0x2b/0x40 sched_tick+0xae/0x7b0 update_process_times+0x14c/0x1b0 tick_periodic+0x62/0x1f0 tick_handle_periodic+0x48/0xf0 timer_interrupt+0x55/0x80 __handle_irq_event_percpu+0x20a/0x5c0 handle_irq_event_percpu+0x18/0xc0 handle_irq_event+0xb5/0x150 handle_level_irq+0x220/0x460 __common_interrupt+0xa2/0x1e0 common_interrupt+0xb0/0xd0 asm_common_interrupt+0x2b/0x40 _raw_spin_unlock_irqrestore+0x45/0x80 __setup_irq+0xc34/0x1a30 request_threaded_irq+0x214/0x2f0 hpet_time_init+0x3e/0x60 x86_late_time_init+0x5b/0xb0 start_kernel+0x308/0x410 x86_64_start_reservations+0x1c/0x30 x86_64_start_kernel+0x96/0xa0 common_startup_64+0x13e/0x148 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&rq->__lock); <Interrupt> lock(&rq->__lock); *** DEADLOCK *** stack backtrace: CPU: 0 UID: 0 PID: 27 Comm: irq_work/0 Call Trace: <TASK> dump_stack_lvl+0x8c/0xd0 dump_stack+0x14/0x20 print_usage_bug+0x42e/0x690 mark_lock.part.44+0x867/0xa70 ? __pfx_mark_lock.part.44+0x10/0x10 ? string_nocheck+0x19c/0x310 ? number+0x739/0x9f0 ? __pfx_string_nocheck+0x10/0x10 ? __pfx_check_pointer+0x10/0x10 ? kvm_sched_clock_read+0x15/0x30 ? sched_clock_noinstr+0xd/0x20 ? local_clock_noinstr+0x1c/0xe0 __lock_acquire+0xc4b/0x62b0 ? __pfx_format_decode+0x10/0x10 ? __pfx_string+0x10/0x10 ? __pfx___lock_acquire+0x10/0x10 ? __pfx_vsnprintf+0x10/0x10 lock_acquire+0x1e1/0x510 ? raw_spin_rq_lock_nested+0x2b/0x40 ? __pfx_lock_acquire+0x10/0x10 ? dump_line+0x12e/0x270 ? raw_spin_rq_lock_nested+0x20/0x40 _raw_spin_lock_nested+0x42/0x80 ? raw_spin_rq_lock_nested+0x2b/0x40 raw_spin_rq_lock_nested+0x2b/0x40 scx_dump_state+0x3b3/0x1270 ? finish_task_switch+0x27e/0x840 scx_ops_error_irq_workfn+0x67/0x80 irq_work_single+0x113/0x260 irq_work_run_list.part.3+0x44/0x70 run_irq_workd+0x6b/0x90 ? __pfx_run_irq_workd+0x10/0x10 smpboot_thread_fn+0x529/0x870 ? __pfx_smpboot_thread_fn+0x10/0x10 kthread+0x305/0x3f0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x40/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> This commit therefore use rq_lock_irqsave/irqrestore() to replace rq_lock/unlock() in the scx_dump_state().
Затронутые продукты
Ссылки
- CVE-2025-68202
- SUSE Bug 1255223
Описание
In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_ct: add seqadj extension for natted connections Sequence adjustment may be required for FTP traffic with PASV/EPSV modes. due to need to re-write packet payload (IP, port) on the ftp control connection. This can require changes to the TCP length and expected seq / ack_seq. The easiest way to reproduce this issue is with PASV mode. Example ruleset: table inet ftp_nat { ct helper ftp_helper { type "ftp" protocol tcp l3proto inet } chain prerouting { type filter hook prerouting priority 0; policy accept; tcp dport 21 ct state new ct helper set "ftp_helper" } } table ip nat { chain prerouting { type nat hook prerouting priority -100; policy accept; tcp dport 21 dnat ip prefix to ip daddr map { 192.168.100.1 : 192.168.13.2/32 } } chain postrouting { type nat hook postrouting priority 100 ; policy accept; tcp sport 21 snat ip prefix to ip saddr map { 192.168.13.2 : 192.168.100.1/32 } } } Note that the ftp helper gets assigned *after* the dnat setup. The inverse (nat after helper assign) is handled by an existing check in nf_nat_setup_info() and will not show the problem. Topoloy: +-------------------+ +----------------------------------+ | FTP: 192.168.13.2 | <-> | NAT: 192.168.13.3, 192.168.100.1 | +-------------------+ +----------------------------------+ | +-----------------------+ | Client: 192.168.100.2 | +-----------------------+ ftp nat changes do not work as expected in this case: Connected to 192.168.100.1. [..] ftp> epsv EPSV/EPRT on IPv4 off. ftp> ls 227 Entering passive mode (192,168,100,1,209,129). 421 Service not available, remote server has closed connection. Kernel logs: Missing nfct_seqadj_ext_add() setup call WARNING: CPU: 1 PID: 0 at net/netfilter/nf_conntrack_seqadj.c:41 [..] __nf_nat_mangle_tcp_packet+0x100/0x160 [nf_nat] nf_nat_ftp+0x142/0x280 [nf_nat_ftp] help+0x4d1/0x880 [nf_conntrack_ftp] nf_confirm+0x122/0x2e0 [nf_conntrack] nf_hook_slow+0x3c/0xb0 .. Fix this by adding the required extension when a conntrack helper is assigned to a connection that has a nat binding.
Затронутые продукты
Ссылки
- CVE-2025-68206
- SUSE Bug 1255142
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/xe/guc: Synchronize Dead CT worker with unbind Cancel and wait for any Dead CT worker to complete before continuing with device unbinding. Else the worker will end up using resources freed by the undind operation. (cherry picked from commit 492671339114e376aaa38626d637a2751cdef263)
Затронутые продукты
Ссылки
- CVE-2025-68207
- SUSE Bug 1255234
Описание
In the Linux kernel, the following vulnerability has been resolved: bpf: account for current allocated stack depth in widen_imprecise_scalars() The usage pattern for widen_imprecise_scalars() looks as follows: prev_st = find_prev_entry(env, ...); queued_st = push_stack(...); widen_imprecise_scalars(env, prev_st, queued_st); Where prev_st is an ancestor of the queued_st in the explored states tree. This ancestor is not guaranteed to have same allocated stack depth as queued_st. E.g. in the following case: def main(): for i in 1..2: foo(i) // same callsite, differnt param def foo(i): if i == 1: use 128 bytes of stack iterator based loop Here, for a second 'foo' call prev_st->allocated_stack is 128, while queued_st->allocated_stack is much smaller. widen_imprecise_scalars() needs to take this into account and avoid accessing bpf_verifier_state->frame[*]->stack out of bounds.
Затронутые продукты
Ссылки
- CVE-2025-68208
- SUSE Bug 1255227
Описание
In the Linux kernel, the following vulnerability has been resolved: mlx5: Fix default values in create CQ Currently, CQs without a completion function are assigned the mlx5_add_cq_to_tasklet function by default. This is problematic since only user CQs created through the mlx5_ib driver are intended to use this function. Additionally, all CQs that will use doorbells instead of polling for completions must call mlx5_cq_arm. However, the default CQ creation flow leaves a valid value in the CQ's arm_db field, allowing FW to send interrupts to polling-only CQs in certain corner cases. These two factors would allow a polling-only kernel CQ to be triggered by an EQ interrupt and call a completion function intended only for user CQs, causing a null pointer exception. Some areas in the driver have prevented this issue with one-off fixes but did not address the root cause. This patch fixes the described issue by adding defaults to the create CQ flow. It adds a default dummy completion function to protect against null pointer exceptions, and it sets an invalid command sequence number by default in kernel CQs to prevent the FW from sending an interrupt to the CQ until it is armed. User CQs are responsible for their own initialization values. Callers of mlx5_core_create_cq are responsible for changing the completion function and arming the CQ per their needs.
Затронутые продукты
Ссылки
- CVE-2025-68209
- SUSE Bug 1255230
Описание
In the Linux kernel, the following vulnerability has been resolved: erofs: avoid infinite loop due to incomplete zstd-compressed data Currently, the decompression logic incorrectly spins if compressed data is truncated in crafted (deliberately corrupted) images.
Затронутые продукты
Ссылки
- CVE-2025-68210
- SUSE Bug 1255231
Описание
In the Linux kernel, the following vulnerability has been resolved: idpf: fix possible vport_config NULL pointer deref in remove Attempting to remove the driver will cause a crash in cases where the vport failed to initialize. Following trace is from an instance where the driver failed during an attempt to create a VF: [ 1661.543624] idpf 0000:84:00.7: Device HW Reset initiated [ 1722.923726] idpf 0000:84:00.7: Transaction timed-out (op:1 cookie:2900 vc_op:1 salt:29 timeout:60000ms) [ 1723.353263] BUG: kernel NULL pointer dereference, address: 0000000000000028 ... [ 1723.358472] RIP: 0010:idpf_remove+0x11c/0x200 [idpf] ... [ 1723.364973] Call Trace: [ 1723.365475] <TASK> [ 1723.365972] pci_device_remove+0x42/0xb0 [ 1723.366481] device_release_driver_internal+0x1a9/0x210 [ 1723.366987] pci_stop_bus_device+0x6d/0x90 [ 1723.367488] pci_stop_and_remove_bus_device+0x12/0x20 [ 1723.367971] pci_iov_remove_virtfn+0xbd/0x120 [ 1723.368309] sriov_disable+0x34/0xe0 [ 1723.368643] idpf_sriov_configure+0x58/0x140 [idpf] [ 1723.368982] sriov_numvfs_store+0xda/0x1c0 Avoid the NULL pointer dereference by adding NULL pointer check for vport_config[i], before freeing user_config.q_coalesce.
Затронутые продукты
Ссылки
- CVE-2025-68213
- SUSE Bug 1255228
Описание
In the Linux kernel, the following vulnerability has been resolved: ice: fix PTP cleanup on driver removal in error path Improve the cleanup on releasing PTP resources in error path. The error case might happen either at the driver probe and PTP feature initialization or on PTP restart (errors in reset handling, NVM update etc). In both cases, calls to PF PTP cleanup (ice_ptp_cleanup_pf function) and 'ps_lock' mutex deinitialization were missed. Additionally, ptp clock was not unregistered in the latter case. Keep PTP state as 'uninitialized' on init to distinguish between error scenarios and to avoid resource release duplication at driver removal. The consequence of missing ice_ptp_cleanup_pf call is the following call trace dumped when ice_adapter object is freed (port list is not empty, as it is required at this stage): [ T93022] ------------[ cut here ]------------ [ T93022] WARNING: CPU: 10 PID: 93022 at ice/ice_adapter.c:67 ice_adapter_put+0xef/0x100 [ice] ... [ T93022] RIP: 0010:ice_adapter_put+0xef/0x100 [ice] ... [ T93022] Call Trace: [ T93022] <TASK> [ T93022] ? ice_adapter_put+0xef/0x100 [ice 33d2647ad4f6d866d41eefff1806df37c68aef0c] [ T93022] ? __warn.cold+0xb0/0x10e [ T93022] ? ice_adapter_put+0xef/0x100 [ice 33d2647ad4f6d866d41eefff1806df37c68aef0c] [ T93022] ? report_bug+0xd8/0x150 [ T93022] ? handle_bug+0xe9/0x110 [ T93022] ? exc_invalid_op+0x17/0x70 [ T93022] ? asm_exc_invalid_op+0x1a/0x20 [ T93022] ? ice_adapter_put+0xef/0x100 [ice 33d2647ad4f6d866d41eefff1806df37c68aef0c] [ T93022] pci_device_remove+0x42/0xb0 [ T93022] device_release_driver_internal+0x19f/0x200 [ T93022] driver_detach+0x48/0x90 [ T93022] bus_remove_driver+0x70/0xf0 [ T93022] pci_unregister_driver+0x42/0xb0 [ T93022] ice_module_exit+0x10/0xdb0 [ice 33d2647ad4f6d866d41eefff1806df37c68aef0c] ... [ T93022] ---[ end trace 0000000000000000 ]--- [ T93022] ice: module unloaded
Затронутые продукты
Ссылки
- CVE-2025-68215
- SUSE Bug 1255226
Описание
In the Linux kernel, the following vulnerability has been resolved: Input: pegasus-notetaker - fix potential out-of-bounds access In the pegasus_notetaker driver, the pegasus_probe() function allocates the URB transfer buffer using the wMaxPacketSize value from the endpoint descriptor. An attacker can use a malicious USB descriptor to force the allocation of a very small buffer. Subsequently, if the device sends an interrupt packet with a specific pattern (e.g., where the first byte is 0x80 or 0x42), the pegasus_parse_packet() function parses the packet without checking the allocated buffer size. This leads to an out-of-bounds memory access.
Затронутые продукты
Ссылки
- CVE-2025-68217
- SUSE Bug 1255221
Описание
In the Linux kernel, the following vulnerability has been resolved: pinctrl: s32cc: fix uninitialized memory in s32_pinctrl_desc s32_pinctrl_desc is allocated with devm_kmalloc(), but not all of its fields are initialized. Notably, num_custom_params is used in pinconf_generic_parse_dt_config(), resulting in intermittent allocation errors, such as the following splat when probing i2c-imx: WARNING: CPU: 0 PID: 176 at mm/page_alloc.c:4795 __alloc_pages_noprof+0x290/0x300 [...] Hardware name: NXP S32G3 Reference Design Board 3 (S32G-VNP-RDB3) (DT) [...] Call trace: __alloc_pages_noprof+0x290/0x300 (P) ___kmalloc_large_node+0x84/0x168 __kmalloc_large_node_noprof+0x34/0x120 __kmalloc_noprof+0x2ac/0x378 pinconf_generic_parse_dt_config+0x68/0x1a0 s32_dt_node_to_map+0x104/0x248 dt_to_map_one_config+0x154/0x1d8 pinctrl_dt_to_map+0x12c/0x280 create_pinctrl+0x6c/0x270 pinctrl_get+0xc0/0x170 devm_pinctrl_get+0x50/0xa0 pinctrl_bind_pins+0x60/0x2a0 really_probe+0x60/0x3a0 [...] __platform_driver_register+0x2c/0x40 i2c_adap_imx_init+0x28/0xff8 [i2c_imx] [...] This results in later parse failures that can cause issues in dependent drivers: s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c0-pins/i2c0-grp0: could not parse node property s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c0-pins/i2c0-grp0: could not parse node property [...] pca953x 0-0022: failed writing register: -6 i2c i2c-0: IMX I2C adapter registered s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c2-pins/i2c2-grp0: could not parse node property s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c2-pins/i2c2-grp0: could not parse node property i2c i2c-1: IMX I2C adapter registered s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c4-pins/i2c4-grp0: could not parse node property s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c4-pins/i2c4-grp0: could not parse node property i2c i2c-2: IMX I2C adapter registered Fix this by initializing s32_pinctrl_desc with devm_kzalloc() instead of devm_kmalloc() in s32_pinctrl_probe(), which sets the previously uninitialized fields to zero.
Затронутые продукты
Ссылки
- CVE-2025-68222
- SUSE Bug 1255218
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: delete radeon_fence_process in is_signaled, no deadlock Delete the attempt to progress the queue when checking if fence is signaled. This avoids deadlock. dma-fence_ops::signaled can be called with the fence lock in unknown state. For radeon, the fence lock is also the wait queue lock. This can cause a self deadlock when signaled() tries to make forward progress on the wait queue. But advancing the queue is unneeded because incorrectly returning false from signaled() is perfectly acceptable. (cherry picked from commit 527ba26e50ec2ca2be9c7c82f3ad42998a75d0db)
Затронутые продукты
Ссылки
- CVE-2025-68223
- SUSE Bug 1255357
- SUSE Bug 1255358
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix gpu page fault after hibernation on PF passthrough On PF passthrough environment, after hibernate and then resume, coralgemm will cause gpu page fault. Mode1 reset happens during hibernate, but partition mode is not restored on resume, register mmCP_HYP_XCP_CTL and mmCP_PSP_XCP_CTL is not right after resume. When CP access the MQD BO, wrong stride size is used, this will cause out of bound access on the MQD BO, resulting page fault. The fix is to ensure gfx_v9_4_3_switch_compute_partition() is called when resume from a hibernation. KFD resume is called separately during a reset recovery or resume from suspend sequence. Hence it's not required to be called as part of partition switch. (cherry picked from commit 5d1b32cfe4a676fe552416cb5ae847b215463a1a)
Затронутые продукты
Ссылки
- CVE-2025-68230
- SUSE Bug 1255134
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/tegra: Add call to put_pid() Add a call to put_pid() corresponding to get_task_pid(). host1x_memory_context_alloc() does not take ownership of the PID so we need to free it here to avoid leaking. [mperttunen@nvidia.com: reword commit message]
Затронутые продукты
Ссылки
- CVE-2025-68233
- SUSE Bug 1255206
Описание
In the Linux kernel, the following vulnerability has been resolved: nouveau/firmware: Add missing kfree() of nvkm_falcon_fw::boot nvkm_falcon_fw::boot is allocated, but no one frees it. This causes a kmemleak warning. Make sure this data is deallocated.
Затронутые продукты
Ссылки
- CVE-2025-68235
- SUSE Bug 1255209
Описание
In the Linux kernel, the following vulnerability has been resolved: mtdchar: fix integer overflow in read/write ioctls The "req.start" and "req.len" variables are u64 values that come from the user at the start of the function. We mask away the high 32 bits of "req.len" so that's capped at U32_MAX but the "req.start" variable can go up to U64_MAX which means that the addition can still integer overflow. Use check_add_overflow() to fix this bug.
Затронутые продукты
Ссылки
- CVE-2025-68237
- SUSE Bug 1255203
Описание
In the Linux kernel, the following vulnerability has been resolved: mtd: rawnand: cadence: fix DMA device NULL pointer dereference The DMA device pointer `dma_dev` was being dereferenced before ensuring that `cdns_ctrl->dmac` is properly initialized. Move the assignment of `dma_dev` after successfully acquiring the DMA channel to ensure the pointer is valid before use.
Затронутые продукты
Ссылки
- CVE-2025-68238
- SUSE Bug 1255202
Описание
In the Linux kernel, the following vulnerability has been resolved: binfmt_misc: restore write access before closing files opened by open_exec() bm_register_write() opens an executable file using open_exec(), which internally calls do_open_execat() and denies write access on the file to avoid modification while it is being executed. However, when an error occurs, bm_register_write() closes the file using filp_close() directly. This does not restore the write permission, which may cause subsequent write operations on the same file to fail. Fix this by calling exe_file_allow_write_access() before filp_close() to restore the write permission properly.
Затронутые продукты
Ссылки
- CVE-2025-68239
- SUSE Bug 1255272
Описание
In the Linux kernel, the following vulnerability has been resolved: NFS: Fix LTP test failures when timestamps are delegated The utimes01 and utime06 tests fail when delegated timestamps are enabled, specifically in subtests that modify the atime and mtime fields using the 'nobody' user ID. The problem can be reproduced as follow: # echo "/media *(rw,no_root_squash,sync)" >> /etc/exports # export -ra # mount -o rw,nfsvers=4.2 127.0.0.1:/media /tmpdir # cd /opt/ltp # ./runltp -d /tmpdir -s utimes01 # ./runltp -d /tmpdir -s utime06 This issue occurs because nfs_setattr does not verify the inode's UID against the caller's fsuid when delegated timestamps are permitted for the inode. This patch adds the UID check and if it does not match then the request is sent to the server for permission checking.
Затронутые продукты
Ссылки
- CVE-2025-68242
- SUSE Bug 1255186
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/i915: Avoid lock inversion when pinning to GGTT on CHV/BXT+VTD On completion of i915_vma_pin_ww(), a synchronous variant of dma_fence_work_commit() is called. When pinning a VMA to GGTT address space on a Cherry View family processor, or on a Broxton generation SoC with VTD enabled, i.e., when stop_machine() is then called from intel_ggtt_bind_vma(), that can potentially lead to lock inversion among reservation_ww and cpu_hotplug locks. [86.861179] ====================================================== [86.861193] WARNING: possible circular locking dependency detected [86.861209] 6.15.0-rc5-CI_DRM_16515-gca0305cadc2d+ #1 Tainted: G U [86.861226] ------------------------------------------------------ [86.861238] i915_module_loa/1432 is trying to acquire lock: [86.861252] ffffffff83489090 (cpu_hotplug_lock){++++}-{0:0}, at: stop_machine+0x1c/0x50 [86.861290] but task is already holding lock: [86.861303] ffffc90002e0b4c8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_vma_pin.constprop.0+0x39/0x1d0 [i915] [86.862233] which lock already depends on the new lock. [86.862251] the existing dependency chain (in reverse order) is: [86.862265] -> #5 (reservation_ww_class_mutex){+.+.}-{3:3}: [86.862292] dma_resv_lockdep+0x19a/0x390 [86.862315] do_one_initcall+0x60/0x3f0 [86.862334] kernel_init_freeable+0x3cd/0x680 [86.862353] kernel_init+0x1b/0x200 [86.862369] ret_from_fork+0x47/0x70 [86.862383] ret_from_fork_asm+0x1a/0x30 [86.862399] -> #4 (reservation_ww_class_acquire){+.+.}-{0:0}: [86.862425] dma_resv_lockdep+0x178/0x390 [86.862440] do_one_initcall+0x60/0x3f0 [86.862454] kernel_init_freeable+0x3cd/0x680 [86.862470] kernel_init+0x1b/0x200 [86.862482] ret_from_fork+0x47/0x70 [86.862495] ret_from_fork_asm+0x1a/0x30 [86.862509] -> #3 (&mm->mmap_lock){++++}-{3:3}: [86.862531] down_read_killable+0x46/0x1e0 [86.862546] lock_mm_and_find_vma+0xa2/0x280 [86.862561] do_user_addr_fault+0x266/0x8e0 [86.862578] exc_page_fault+0x8a/0x2f0 [86.862593] asm_exc_page_fault+0x27/0x30 [86.862607] filldir64+0xeb/0x180 [86.862620] kernfs_fop_readdir+0x118/0x480 [86.862635] iterate_dir+0xcf/0x2b0 [86.862648] __x64_sys_getdents64+0x84/0x140 [86.862661] x64_sys_call+0x1058/0x2660 [86.862675] do_syscall_64+0x91/0xe90 [86.862689] entry_SYSCALL_64_after_hwframe+0x76/0x7e [86.862703] -> #2 (&root->kernfs_rwsem){++++}-{3:3}: [86.862725] down_write+0x3e/0xf0 [86.862738] kernfs_add_one+0x30/0x3c0 [86.862751] kernfs_create_dir_ns+0x53/0xb0 [86.862765] internal_create_group+0x134/0x4c0 [86.862779] sysfs_create_group+0x13/0x20 [86.862792] topology_add_dev+0x1d/0x30 [86.862806] cpuhp_invoke_callback+0x4b5/0x850 [86.862822] cpuhp_issue_call+0xbf/0x1f0 [86.862836] __cpuhp_setup_state_cpuslocked+0x111/0x320 [86.862852] __cpuhp_setup_state+0xb0/0x220 [86.862866] topology_sysfs_init+0x30/0x50 [86.862879] do_one_initcall+0x60/0x3f0 [86.862893] kernel_init_freeable+0x3cd/0x680 [86.862908] kernel_init+0x1b/0x200 [86.862921] ret_from_fork+0x47/0x70 [86.862934] ret_from_fork_asm+0x1a/0x30 [86.862947] -> #1 (cpuhp_state_mutex){+.+.}-{3:3}: [86.862969] __mutex_lock+0xaa/0xed0 [86.862982] mutex_lock_nested+0x1b/0x30 [86.862995] __cpuhp_setup_state_cpuslocked+0x67/0x320 [86.863012] __cpuhp_setup_state+0xb0/0x220 [86.863026] page_alloc_init_cpuhp+0x2d/0x60 [86.863041] mm_core_init+0x22/0x2d0 [86.863054] start_kernel+0x576/0xbd0 [86.863068] x86_64_start_reservations+0x18/0x30 [86.863084] x86_64_start_kernel+0xbf/0x110 [86.863098] common_startup_64+0x13e/0x141 [86.863114] -> #0 (cpu_hotplug_lock){++++}-{0:0}: [86.863135] __lock_acquire+0x16 ---truncated---
Затронутые продукты
Ссылки
- CVE-2025-68244
- SUSE Bug 1255190
Описание
In the Linux kernel, the following vulnerability has been resolved: most: usb: hdm_probe: Fix calling put_device() before device initialization The early error path in hdm_probe() can jump to err_free_mdev before &mdev->dev has been initialized with device_initialize(). Calling put_device(&mdev->dev) there triggers a device core WARN and ends up invoking kref_put(&kobj->kref, kobject_release) on an uninitialized kobject. In this path the private struct was only kmalloc'ed and the intended release is effectively kfree(mdev) anyway, so free it directly instead of calling put_device() on an uninitialized device. This removes the WARNING and fixes the pre-initialization error path.
Затронутые продукты
Ссылки
- CVE-2025-68249
- SUSE Bug 1255233
Описание
In the Linux kernel, the following vulnerability has been resolved: misc: fastrpc: Fix dma_buf object leak in fastrpc_map_lookup In fastrpc_map_lookup, dma_buf_get is called to obtain a reference to the dma_buf for comparison purposes. However, this reference is never released when the function returns, leading to a dma_buf memory leak. Fix this by adding dma_buf_put before returning from the function, ensuring that the temporarily acquired reference is properly released regardless of whether a matching map is found. Rule: add
Затронутые продукты
Ссылки
- CVE-2025-68252
- SUSE Bug 1255197
Описание
In the Linux kernel, the following vulnerability has been resolved: staging: rtl8723bs: fix out-of-bounds read in OnBeacon ESR IE parsing The Extended Supported Rates (ESR) IE handling in OnBeacon accessed *(p + 1 + ielen) and *(p + 2 + ielen) without verifying that these offsets lie within the received frame buffer. A malformed beacon with an ESR IE positioned at the end of the buffer could cause an out-of-bounds read, potentially triggering a kernel panic. Add a boundary check to ensure that the ESR IE body and the subsequent bytes are within the limits of the frame before attempting to access them. This prevents OOB reads caused by malformed beacon frames.
Затронутые продукты
Ссылки
- CVE-2025-68254
- SUSE Bug 1255140
Описание
In the Linux kernel, the following vulnerability has been resolved: staging: rtl8723bs: fix stack buffer overflow in OnAssocReq IE parsing The Supported Rates IE length from an incoming Association Request frame was used directly as the memcpy() length when copying into a fixed-size 16-byte stack buffer (supportRate). A malicious station can advertise an IE length larger than 16 bytes, causing a stack buffer overflow. Clamp ie_len to the buffer size before copying the Supported Rates IE, and correct the bounds check when merging Extended Supported Rates to prevent a second potential overflow. This prevents kernel stack corruption triggered by malformed association requests.
Затронутые продукты
Ссылки
- CVE-2025-68255
- SUSE Bug 1255395
Описание
In the Linux kernel, the following vulnerability has been resolved: staging: rtl8723bs: fix out-of-bounds read in rtw_get_ie() parser The Information Element (IE) parser rtw_get_ie() trusted the length byte of each IE without validating that the IE body (len bytes after the 2-byte header) fits inside the remaining frame buffer. A malformed frame can advertise an IE length larger than the available data, causing the parser to increment its pointer beyond the buffer end. This results in out-of-bounds reads or, depending on the pattern, an infinite loop. Fix by validating that (offset + 2 + len) does not exceed the limit before accepting the IE or advancing to the next element. This prevents OOB reads and ensures the parser terminates safely on malformed frames.
Затронутые продукты
Ссылки
- CVE-2025-68256
- SUSE Bug 1255138
Описание
In the Linux kernel, the following vulnerability has been resolved: comedi: check device's attached status in compat ioctls Syzbot identified an issue [1] that crashes kernel, seemingly due to unexistent callback dev->get_valid_routes(). By all means, this should not occur as said callback must always be set to get_zero_valid_routes() in __comedi_device_postconfig(). As the crash seems to appear exclusively in i386 kernels, at least, judging from [1] reports, the blame lies with compat versions of standard IOCTL handlers. Several of them are modified and do not use comedi_unlocked_ioctl(). While functionality of these ioctls essentially copy their original versions, they do not have required sanity check for device's attached status. This, in turn, leads to a possibility of calling select IOCTLs on a device that has not been properly setup, even via COMEDI_DEVCONFIG. Doing so on unconfigured devices means that several crucial steps are missed, for instance, specifying dev->get_valid_routes() callback. Fix this somewhat crudely by ensuring device's attached status before performing any ioctls, improving logic consistency between modern and compat functions. [1] Syzbot report: BUG: kernel NULL pointer dereference, address: 0000000000000000 ... CR2: ffffffffffffffd6 CR3: 000000006c717000 CR4: 0000000000352ef0 Call Trace: <TASK> get_valid_routes drivers/comedi/comedi_fops.c:1322 [inline] parse_insn+0x78c/0x1970 drivers/comedi/comedi_fops.c:1401 do_insnlist_ioctl+0x272/0x700 drivers/comedi/comedi_fops.c:1594 compat_insnlist drivers/comedi/comedi_fops.c:3208 [inline] comedi_compat_ioctl+0x810/0x990 drivers/comedi/comedi_fops.c:3273 __do_compat_sys_ioctl fs/ioctl.c:695 [inline] __se_compat_sys_ioctl fs/ioctl.c:638 [inline] __ia32_compat_sys_ioctl+0x242/0x370 fs/ioctl.c:638 do_syscall_32_irqs_on arch/x86/entry/syscall_32.c:83 [inline] ...
Затронутые продукты
Ссылки
- CVE-2025-68257
- SUSE Bug 1255167
Описание
In the Linux kernel, the following vulnerability has been resolved: comedi: multiq3: sanitize config options in multiq3_attach() Syzbot identified an issue [1] in multiq3_attach() that induces a task timeout due to open() or COMEDI_DEVCONFIG ioctl operations, specifically, in the case of multiq3 driver. This problem arose when syzkaller managed to craft weird configuration options used to specify the number of channels in encoder subdevice. If a particularly great number is passed to s->n_chan in multiq3_attach() via it->options[2], then multiple calls to multiq3_encoder_reset() at the end of driver-specific attach() method will be running for minutes, thus blocking tasks and affected devices as well. While this issue is most likely not too dangerous for real-life devices, it still makes sense to sanitize configuration inputs. Enable a sensible limit on the number of encoder chips (4 chips max, each with 2 channels) to stop this behaviour from manifesting. [1] Syzbot crash: INFO: task syz.2.19:6067 blocked for more than 143 seconds. ... Call Trace: <TASK> context_switch kernel/sched/core.c:5254 [inline] __schedule+0x17c4/0x4d60 kernel/sched/core.c:6862 __schedule_loop kernel/sched/core.c:6944 [inline] schedule+0x165/0x360 kernel/sched/core.c:6959 schedule_preempt_disabled+0x13/0x30 kernel/sched/core.c:7016 __mutex_lock_common kernel/locking/mutex.c:676 [inline] __mutex_lock+0x7e6/0x1350 kernel/locking/mutex.c:760 comedi_open+0xc0/0x590 drivers/comedi/comedi_fops.c:2868 chrdev_open+0x4cc/0x5e0 fs/char_dev.c:414 do_dentry_open+0x953/0x13f0 fs/open.c:965 vfs_open+0x3b/0x340 fs/open.c:1097 ...
Затронутые продукты
Ссылки
- CVE-2025-68258
- SUSE Bug 1255182
Описание
In the Linux kernel, the following vulnerability has been resolved: KVM: SVM: Don't skip unrelated instruction if INT3/INTO is replaced When re-injecting a soft interrupt from an INT3, INT0, or (select) INTn instruction, discard the exception and retry the instruction if the code stream is changed (e.g. by a different vCPU) between when the CPU executes the instruction and when KVM decodes the instruction to get the next RIP. As effectively predicted by commit 6ef88d6e36c2 ("KVM: SVM: Re-inject INT3/INTO instead of retrying the instruction"), failure to verify that the correct INTn instruction was decoded can effectively clobber guest state due to decoding the wrong instruction and thus specifying the wrong next RIP. The bug most often manifests as "Oops: int3" panics on static branch checks in Linux guests. Enabling or disabling a static branch in Linux uses the kernel's "text poke" code patching mechanism. To modify code while other CPUs may be executing that code, Linux (temporarily) replaces the first byte of the original instruction with an int3 (opcode 0xcc), then patches in the new code stream except for the first byte, and finally replaces the int3 with the first byte of the new code stream. If a CPU hits the int3, i.e. executes the code while it's being modified, then the guest kernel must look up the RIP to determine how to handle the #BP, e.g. by emulating the new instruction. If the RIP is incorrect, then this lookup fails and the guest kernel panics. The bug reproduces almost instantly by hacking the guest kernel to repeatedly check a static branch[1] while running a drgn script[2] on the host to constantly swap out the memory containing the guest's TSS. [1]: https://gist.github.com/osandov/44d17c51c28c0ac998ea0334edf90b5a [2]: https://gist.github.com/osandov/10e45e45afa29b11e0c7209247afc00b
Затронутые продукты
Ссылки
- CVE-2025-68259
- SUSE Bug 1255199
Описание
In the Linux kernel, the following vulnerability has been resolved: ext4: refresh inline data size before write operations The cached ei->i_inline_size can become stale between the initial size check and when ext4_update_inline_data()/ext4_create_inline_data() use it. Although ext4_get_max_inline_size() reads the correct value at the time of the check, concurrent xattr operations can modify i_inline_size before ext4_write_lock_xattr() is acquired. This causes ext4_update_inline_data() and ext4_create_inline_data() to work with stale capacity values, leading to a BUG_ON() crash in ext4_write_inline_data(): kernel BUG at fs/ext4/inline.c:1331! BUG_ON(pos + len > EXT4_I(inode)->i_inline_size); The race window: 1. ext4_get_max_inline_size() reads i_inline_size = 60 (correct) 2. Size check passes for 50-byte write 3. [Another thread adds xattr, i_inline_size changes to 40] 4. ext4_write_lock_xattr() acquires lock 5. ext4_update_inline_data() uses stale i_inline_size = 60 6. Attempts to write 50 bytes but only 40 bytes actually available 7. BUG_ON() triggers Fix this by recalculating i_inline_size via ext4_find_inline_data_nolock() immediately after acquiring xattr_sem. This ensures ext4_update_inline_data() and ext4_create_inline_data() work with current values that are protected from concurrent modifications. This is similar to commit a54c4613dac1 ("ext4: fix race writing to an inline_data file while its xattrs are changing") which fixed i_inline_off staleness. This patch addresses the related i_inline_size staleness issue.
Затронутые продукты
Ссылки
- CVE-2025-68264
- SUSE Bug 1255380
Описание
In the Linux kernel, the following vulnerability has been resolved: libceph: replace BUG_ON with bounds check for map->max_osd OSD indexes come from untrusted network packets. Boundary checks are added to validate these against map->max_osd. [ idryomov: drop BUG_ON in ceph_get_primary_affinity(), minor cosmetic edits ]
Затронутые продукты
Ссылки
- CVE-2025-68283
- SUSE Bug 1255379
Описание
In the Linux kernel, the following vulnerability has been resolved: libceph: prevent potential out-of-bounds writes in handle_auth_session_key() The len field originates from untrusted network packets. Boundary checks have been added to prevent potential out-of-bounds writes when decrypting the connection secret or processing service tickets. [ idryomov: changelog ]
Затронутые продукты
Ссылки
- CVE-2025-68284
- SUSE Bug 1255377
- SUSE Bug 1255378
Описание
In the Linux kernel, the following vulnerability has been resolved: libceph: fix potential use-after-free in have_mon_and_osd_map() The wait loop in __ceph_open_session() can race with the client receiving a new monmap or osdmap shortly after the initial map is received. Both ceph_monc_handle_map() and handle_one_map() install a new map immediately after freeing the old one kfree(monc->monmap); monc->monmap = monmap; ceph_osdmap_destroy(osdc->osdmap); osdc->osdmap = newmap; under client->monc.mutex and client->osdc.lock respectively, but because neither is taken in have_mon_and_osd_map() it's possible for client->monc.monmap->epoch and client->osdc.osdmap->epoch arms in client->monc.monmap && client->monc.monmap->epoch && client->osdc.osdmap && client->osdc.osdmap->epoch; condition to dereference an already freed map. This happens to be reproducible with generic/395 and generic/397 with KASAN enabled: BUG: KASAN: slab-use-after-free in have_mon_and_osd_map+0x56/0x70 Read of size 4 at addr ffff88811012d810 by task mount.ceph/13305 CPU: 2 UID: 0 PID: 13305 Comm: mount.ceph Not tainted 6.14.0-rc2-build2+ #1266 ... Call Trace: <TASK> have_mon_and_osd_map+0x56/0x70 ceph_open_session+0x182/0x290 ceph_get_tree+0x333/0x680 vfs_get_tree+0x49/0x180 do_new_mount+0x1a3/0x2d0 path_mount+0x6dd/0x730 do_mount+0x99/0xe0 __do_sys_mount+0x141/0x180 do_syscall_64+0x9f/0x100 entry_SYSCALL_64_after_hwframe+0x76/0x7e </TASK> Allocated by task 13305: ceph_osdmap_alloc+0x16/0x130 ceph_osdc_init+0x27a/0x4c0 ceph_create_client+0x153/0x190 create_fs_client+0x50/0x2a0 ceph_get_tree+0xff/0x680 vfs_get_tree+0x49/0x180 do_new_mount+0x1a3/0x2d0 path_mount+0x6dd/0x730 do_mount+0x99/0xe0 __do_sys_mount+0x141/0x180 do_syscall_64+0x9f/0x100 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 9475: kfree+0x212/0x290 handle_one_map+0x23c/0x3b0 ceph_osdc_handle_map+0x3c9/0x590 mon_dispatch+0x655/0x6f0 ceph_con_process_message+0xc3/0xe0 ceph_con_v1_try_read+0x614/0x760 ceph_con_workfn+0x2de/0x650 process_one_work+0x486/0x7c0 process_scheduled_works+0x73/0x90 worker_thread+0x1c8/0x2a0 kthread+0x2ec/0x300 ret_from_fork+0x24/0x40 ret_from_fork_asm+0x1a/0x30 Rewrite the wait loop to check the above condition directly with client->monc.mutex and client->osdc.lock taken as appropriate. While at it, improve the timeout handling (previously mount_timeout could be exceeded in case wait_event_interruptible_timeout() slept more than once) and access client->auth_err under client->monc.mutex to match how it's set in finish_auth(). monmap_show() and osdmap_show() now take the respective lock before accessing the map as well.
Затронутые продукты
Ссылки
- CVE-2025-68285
- SUSE Bug 1255401
- SUSE Bug 1255402
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check NULL before accessing [WHAT] IGT kms_cursor_legacy's long-nonblocking-modeset-vs-cursor-atomic fails with NULL pointer dereference. This can be reproduced with both an eDP panel and a DP monitors connected. BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 13 UID: 0 PID: 2960 Comm: kms_cursor_lega Not tainted 6.16.0-99-custom #8 PREEMPT(voluntary) Hardware name: AMD ........ RIP: 0010:dc_stream_get_scanoutpos+0x34/0x130 [amdgpu] Code: 57 4d 89 c7 41 56 49 89 ce 41 55 49 89 d5 41 54 49 89 fc 53 48 83 ec 18 48 8b 87 a0 64 00 00 48 89 75 d0 48 c7 c6 e0 41 30 c2 <48> 8b 38 48 8b 9f 68 06 00 00 e8 8d d7 fd ff 31 c0 48 81 c3 e0 02 RSP: 0018:ffffd0f3c2bd7608 EFLAGS: 00010292 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffd0f3c2bd7668 RDX: ffffd0f3c2bd7664 RSI: ffffffffc23041e0 RDI: ffff8b32494b8000 RBP: ffffd0f3c2bd7648 R08: ffffd0f3c2bd766c R09: ffffd0f3c2bd7760 R10: ffffd0f3c2bd7820 R11: 0000000000000000 R12: ffff8b32494b8000 R13: ffffd0f3c2bd7664 R14: ffffd0f3c2bd7668 R15: ffffd0f3c2bd766c FS: 000071f631b68700(0000) GS:ffff8b399f114000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 00000001b8105000 CR4: 0000000000f50ef0 PKRU: 55555554 Call Trace: <TASK> dm_crtc_get_scanoutpos+0xd7/0x180 [amdgpu] amdgpu_display_get_crtc_scanoutpos+0x86/0x1c0 [amdgpu] ? __pfx_amdgpu_crtc_get_scanout_position+0x10/0x10[amdgpu] amdgpu_crtc_get_scanout_position+0x27/0x50 [amdgpu] drm_crtc_vblank_helper_get_vblank_timestamp_internal+0xf7/0x400 drm_crtc_vblank_helper_get_vblank_timestamp+0x1c/0x30 drm_crtc_get_last_vbltimestamp+0x55/0x90 drm_crtc_next_vblank_start+0x45/0xa0 drm_atomic_helper_wait_for_fences+0x81/0x1f0 ... (cherry picked from commit 621e55f1919640acab25383362b96e65f2baea3c)
Затронутые продукты
Ссылки
- CVE-2025-68286
- SUSE Bug 1255351
Описание
In the Linux kernel, the following vulnerability has been resolved: usb: dwc3: Fix race condition between concurrent dwc3_remove_requests() call paths This patch addresses a race condition caused by unsynchronized execution of multiple call paths invoking `dwc3_remove_requests()`, leading to premature freeing of USB requests and subsequent crashes. Three distinct execution paths interact with `dwc3_remove_requests()`: Path 1: Triggered via `dwc3_gadget_reset_interrupt()` during USB reset handling. The call stack includes: - `dwc3_ep0_reset_state()` - `dwc3_ep0_stall_and_restart()` - `dwc3_ep0_out_start()` - `dwc3_remove_requests()` - `dwc3_gadget_del_and_unmap_request()` Path 2: Also initiated from `dwc3_gadget_reset_interrupt()`, but through `dwc3_stop_active_transfers()`. The call stack includes: - `dwc3_stop_active_transfers()` - `dwc3_remove_requests()` - `dwc3_gadget_del_and_unmap_request()` Path 3: Occurs independently during `adb root` execution, which triggers USB function unbind and bind operations. The sequence includes: - `gserial_disconnect()` - `usb_ep_disable()` - `dwc3_gadget_ep_disable()` - `dwc3_remove_requests()` with `-ESHUTDOWN` status Path 3 operates asynchronously and lacks synchronization with Paths 1 and 2. When Path 3 completes, it disables endpoints and frees 'out' requests. If Paths 1 or 2 are still processing these requests, accessing freed memory leads to a crash due to use-after-free conditions. To fix this added check for request completion and skip processing if already completed and added the request status for ep0 while queue.
Затронутые продукты
Ссылки
- CVE-2025-68287
- SUSE Bug 1255152
Описание
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_eem: Fix memory leak in eem_unwrap The existing code did not handle the failure case of usb_ep_queue in the command path, potentially leading to memory leaks. Improve error handling to free all allocated resources on usb_ep_queue failure. This patch continues to use goto logic for error handling, as the existing error handling is complex and not easily adaptable to auto-cleanup helpers. kmemleak results: unreferenced object 0xffffff895a512300 (size 240): backtrace: slab_post_alloc_hook+0xbc/0x3a4 kmem_cache_alloc+0x1b4/0x358 skb_clone+0x90/0xd8 eem_unwrap+0x1cc/0x36c unreferenced object 0xffffff8a157f4000 (size 256): backtrace: slab_post_alloc_hook+0xbc/0x3a4 __kmem_cache_alloc_node+0x1b4/0x2dc kmalloc_trace+0x48/0x140 dwc3_gadget_ep_alloc_request+0x58/0x11c usb_ep_alloc_request+0x40/0xe4 eem_unwrap+0x204/0x36c unreferenced object 0xffffff8aadbaac00 (size 128): backtrace: slab_post_alloc_hook+0xbc/0x3a4 __kmem_cache_alloc_node+0x1b4/0x2dc __kmalloc+0x64/0x1a8 eem_unwrap+0x218/0x36c unreferenced object 0xffffff89ccef3500 (size 64): backtrace: slab_post_alloc_hook+0xbc/0x3a4 __kmem_cache_alloc_node+0x1b4/0x2dc kmalloc_trace+0x48/0x140 eem_unwrap+0x238/0x36c
Затронутые продукты
Ссылки
- CVE-2025-68289
- SUSE Bug 1255155
Описание
In the Linux kernel, the following vulnerability has been resolved: most: usb: fix double free on late probe failure The MOST subsystem has a non-standard registration function which frees the interface on registration failures and on deregistration. This unsurprisingly leads to bugs in the MOST drivers, and a couple of recent changes turned a reference underflow and use-after-free in the USB driver into several double free and a use-after-free on late probe failures.
Затронутые продукты
Ссылки
- CVE-2025-68290
- SUSE Bug 1255154
Описание
In the Linux kernel, the following vulnerability has been resolved: mm/huge_memory: fix NULL pointer deference when splitting folio Commit c010d47f107f ("mm: thp: split huge page to any lower order pages") introduced an early check on the folio's order via mapping->flags before proceeding with the split work. This check introduced a bug: for shmem folios in the swap cache and truncated folios, the mapping pointer can be NULL. Accessing mapping->flags in this state leads directly to a NULL pointer dereference. This commit fixes the issue by moving the check for mapping != NULL before any attempt to access mapping->flags.
Затронутые продукты
Ссылки
- CVE-2025-68293
- SUSE Bug 1255150
Описание
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btusb: mediatek: Avoid btusb_mtk_claim_iso_intf() NULL deref In btusb_mtk_setup(), we set `btmtk_data->isopkt_intf` to: usb_ifnum_to_if(data->udev, MTK_ISO_IFNUM) That function can return NULL in some cases. Even when it returns NULL, though, we still go on to call btusb_mtk_claim_iso_intf(). As of commit e9087e828827 ("Bluetooth: btusb: mediatek: Add locks for usb_driver_claim_interface()"), calling btusb_mtk_claim_iso_intf() when `btmtk_data->isopkt_intf` is NULL will cause a crash because we'll end up passing a bad pointer to device_lock(). Prior to that commit we'd pass the NULL pointer directly to usb_driver_claim_interface() which would detect it and return an error, which was handled. Resolve the crash in btusb_mtk_claim_iso_intf() by adding a NULL check at the start of the function. This makes the code handle a NULL `btmtk_data->isopkt_intf` the same way it did before the problematic commit (just with a slight change to the error message printed).
Затронутые продукты
Ссылки
- CVE-2025-68298
- SUSE Bug 1255124
Описание
In the Linux kernel, the following vulnerability has been resolved: net: atlantic: fix fragment overflow handling in RX path The atlantic driver can receive packets with more than MAX_SKB_FRAGS (17) fragments when handling large multi-descriptor packets. This causes an out-of-bounds write in skb_add_rx_frag_netmem() leading to kernel panic. The issue occurs because the driver doesn't check the total number of fragments before calling skb_add_rx_frag(). When a packet requires more than MAX_SKB_FRAGS fragments, the fragment index exceeds the array bounds. Fix by assuming there will be an extra frag if buff->len > AQ_CFG_RX_HDR_SIZE, then all fragments are accounted for. And reusing the existing check to prevent the overflow earlier in the code path. This crash occurred in production with an Aquantia AQC113 10G NIC. Stack trace from production environment: ``` RIP: 0010:skb_add_rx_frag_netmem+0x29/0xd0 Code: 90 f3 0f 1e fa 0f 1f 44 00 00 48 89 f8 41 89 ca 48 89 d7 48 63 ce 8b 90 c0 00 00 00 48 c1 e1 04 48 01 ca 48 03 90 c8 00 00 00 <48> 89 7a 30 44 89 52 3c 44 89 42 38 40 f6 c7 01 75 74 48 89 fa 83 RSP: 0018:ffffa9bec02a8d50 EFLAGS: 00010287 RAX: ffff925b22e80a00 RBX: ffff925ad38d2700 RCX: fffffffe0a0c8000 RDX: ffff9258ea95bac0 RSI: ffff925ae0a0c800 RDI: 0000000000037a40 RBP: 0000000000000024 R08: 0000000000000000 R09: 0000000000000021 R10: 0000000000000848 R11: 0000000000000000 R12: ffffa9bec02a8e24 R13: ffff925ad8615570 R14: 0000000000000000 R15: ffff925b22e80a00 FS: 0000000000000000(0000) GS:ffff925e47880000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffff9258ea95baf0 CR3: 0000000166022004 CR4: 0000000000f72ef0 PKRU: 55555554 Call Trace: <IRQ> aq_ring_rx_clean+0x175/0xe60 [atlantic] ? aq_ring_rx_clean+0x14d/0xe60 [atlantic] ? aq_ring_tx_clean+0xdf/0x190 [atlantic] ? kmem_cache_free+0x348/0x450 ? aq_vec_poll+0x81/0x1d0 [atlantic] ? __napi_poll+0x28/0x1c0 ? net_rx_action+0x337/0x420 ``` Changes in v4: - Add Fixes: tag to satisfy patch validation requirements. Changes in v3: - Fix by assuming there will be an extra frag if buff->len > AQ_CFG_RX_HDR_SIZE, then all fragments are accounted for.
Затронутые продукты
Ссылки
- CVE-2025-68301
- SUSE Bug 1255120
Описание
In the Linux kernel, the following vulnerability has been resolved: net: sxgbe: fix potential NULL dereference in sxgbe_rx() Currently, when skb is null, the driver prints an error and then dereferences skb on the next line. To fix this, let's add a 'break' after the error message to switch to sxgbe_rx_refill(), which is similar to the approach taken by the other drivers in this particular case, e.g. calxeda with xgmac_rx(). Found during a code review.
Затронутые продукты
Ссылки
- CVE-2025-68302
- SUSE Bug 1255121
Описание
In the Linux kernel, the following vulnerability has been resolved: platform/x86: intel: punit_ipc: fix memory corruption This passes the address of the pointer "&punit_ipcdev" when the intent was to pass the pointer itself "punit_ipcdev" (without the ampersand). This means that the: complete(&ipcdev->cmd_complete); in intel_punit_ioc() will write to a wrong memory address corrupting it.
Затронутые продукты
Ссылки
- CVE-2025-68303
- SUSE Bug 1255122
Описание
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sock: Prevent race in socket write iter and sock bind There is a potential race condition between sock bind and socket write iter. bind may free the same cmd via mgmt_pending before write iter sends the cmd, just as syzbot reported in UAF[1]. Here we use hci_dev_lock to synchronize the two, thereby avoiding the UAF mentioned in [1]. [1] syzbot reported: BUG: KASAN: slab-use-after-free in mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316 Read of size 8 at addr ffff888077164818 by task syz.0.17/5989 Call Trace: mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316 set_link_security+0x5c2/0x710 net/bluetooth/mgmt.c:1918 hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719 hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg+0x21c/0x270 net/socket.c:742 sock_write_iter+0x279/0x360 net/socket.c:1195 Allocated by task 5989: mgmt_pending_add+0x35/0x140 net/bluetooth/mgmt_util.c:296 set_link_security+0x557/0x710 net/bluetooth/mgmt.c:1910 hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719 hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg+0x21c/0x270 net/socket.c:742 sock_write_iter+0x279/0x360 net/socket.c:1195 Freed by task 5991: mgmt_pending_free net/bluetooth/mgmt_util.c:311 [inline] mgmt_pending_foreach+0x30d/0x380 net/bluetooth/mgmt_util.c:257 mgmt_index_removed+0x112/0x2f0 net/bluetooth/mgmt.c:9477 hci_sock_bind+0xbe9/0x1000 net/bluetooth/hci_sock.c:1314
Затронутые продукты
Ссылки
- CVE-2025-68305
- SUSE Bug 1255169
Описание
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btusb: mediatek: Fix kernel crash when releasing mtk iso interface When performing reset tests and encountering abnormal card drop issues that lead to a kernel crash, it is necessary to perform a null check before releasing resources to avoid attempting to release a null pointer. <4>[ 29.158070] Hardware name: Google Quigon sku196612/196613 board (DT) <4>[ 29.158076] Workqueue: hci0 hci_cmd_sync_work [bluetooth] <4>[ 29.158154] pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) <4>[ 29.158162] pc : klist_remove+0x90/0x158 <4>[ 29.158174] lr : klist_remove+0x88/0x158 <4>[ 29.158180] sp : ffffffc0846b3c00 <4>[ 29.158185] pmr_save: 000000e0 <4>[ 29.158188] x29: ffffffc0846b3c30 x28: ffffff80cd31f880 x27: ffffff80c1bdc058 <4>[ 29.158199] x26: dead000000000100 x25: ffffffdbdc624ea3 x24: ffffff80c1bdc4c0 <4>[ 29.158209] x23: ffffffdbdc62a3e6 x22: ffffff80c6c07000 x21: ffffffdbdc829290 <4>[ 29.158219] x20: 0000000000000000 x19: ffffff80cd3e0648 x18: 000000031ec97781 <4>[ 29.158229] x17: ffffff80c1bdc4a8 x16: ffffffdc10576548 x15: ffffff80c1180428 <4>[ 29.158238] x14: 0000000000000000 x13: 000000000000e380 x12: 0000000000000018 <4>[ 29.158248] x11: ffffff80c2a7fd10 x10: 0000000000000000 x9 : 0000000100000000 <4>[ 29.158257] x8 : 0000000000000000 x7 : 7f7f7f7f7f7f7f7f x6 : 2d7223ff6364626d <4>[ 29.158266] x5 : 0000008000000000 x4 : 0000000000000020 x3 : 2e7325006465636e <4>[ 29.158275] x2 : ffffffdc11afeff8 x1 : 0000000000000000 x0 : ffffffdc11be4d0c <4>[ 29.158285] Call trace: <4>[ 29.158290] klist_remove+0x90/0x158 <4>[ 29.158298] device_release_driver_internal+0x20c/0x268 <4>[ 29.158308] device_release_driver+0x1c/0x30 <4>[ 29.158316] usb_driver_release_interface+0x70/0x88 <4>[ 29.158325] btusb_mtk_release_iso_intf+0x68/0xd8 [btusb (HASH:e8b6 5)] <4>[ 29.158347] btusb_mtk_reset+0x5c/0x480 [btusb (HASH:e8b6 5)] <4>[ 29.158361] hci_cmd_sync_work+0x10c/0x188 [bluetooth (HASH:a4fa 6)] <4>[ 29.158430] process_scheduled_works+0x258/0x4e8 <4>[ 29.158441] worker_thread+0x300/0x428 <4>[ 29.158448] kthread+0x108/0x1d0 <4>[ 29.158455] ret_from_fork+0x10/0x20 <0>[ 29.158467] Code: 91343000 940139d1 f9400268 927ff914 (f9401297) <4>[ 29.158474] ---[ end trace 0000000000000000 ]--- <0>[ 29.167129] Kernel panic - not syncing: Oops: Fatal exception <2>[ 29.167144] SMP: stopping secondary CPUs <4>[ 29.167158] ------------[ cut here ]------------
Затронутые продукты
Ссылки
- CVE-2025-68306
- SUSE Bug 1255145
Описание
In the Linux kernel, the following vulnerability has been resolved: can: gs_usb: gs_usb_xmit_callback(): fix handling of failed transmitted URBs The driver lacks the cleanup of failed transfers of URBs. This reduces the number of available URBs per error by 1. This leads to reduced performance and ultimately to a complete stop of the transmission. If the sending of a bulk URB fails do proper cleanup: - increase netdev stats - mark the echo_sbk as free - free the driver's context and do accounting - wake the send queue
Затронутые продукты
Ссылки
- CVE-2025-68307
- SUSE Bug 1255146
Описание
In the Linux kernel, the following vulnerability has been resolved: can: kvaser_usb: leaf: Fix potential infinite loop in command parsers The `kvaser_usb_leaf_wait_cmd()` and `kvaser_usb_leaf_read_bulk_callback` functions contain logic to zero-length commands. These commands are used to align data to the USB endpoint's wMaxPacketSize boundary. The driver attempts to skip these placeholders by aligning the buffer position `pos` to the next packet boundary using `round_up()` function. However, if zero-length command is found exactly on a packet boundary (i.e., `pos` is a multiple of wMaxPacketSize, including 0), `round_up` function will return the unchanged value of `pos`. This prevents `pos` to be increased, causing an infinite loop in the parsing logic. This patch fixes this in the function by using `pos + 1` instead. This ensures that even if `pos` is on a boundary, the calculation is based on `pos + 1`, forcing `round_up()` to always return the next aligned boundary.
Затронутые продукты
Ссылки
- CVE-2025-68308
- SUSE Bug 1255149
Описание
In the Linux kernel, the following vulnerability has been resolved: tty: serial: ip22zilog: Use platform device for probing After commit 84a9582fd203 ("serial: core: Start managing serial controllers to enable runtime PM") serial drivers need to provide a device in struct uart_port.dev otherwise an oops happens. To fix this issue for ip22zilog driver switch driver to a platform driver and setup the serial device in sgi-ip22 code.
Затронутые продукты
Ссылки
- CVE-2025-68311
- SUSE Bug 1255161
Описание
In the Linux kernel, the following vulnerability has been resolved: usbnet: Prevents free active kevent The root cause of this issue are: 1. When probing the usbnet device, executing usbnet_link_change(dev, 0, 0); put the kevent work in global workqueue. However, the kevent has not yet been scheduled when the usbnet device is unregistered. Therefore, executing free_netdev() results in the "free active object (kevent)" error reported here. 2. Another factor is that when calling usbnet_disconnect()->unregister_netdev(), if the usbnet device is up, ndo_stop() is executed to cancel the kevent. However, because the device is not up, ndo_stop() is not executed. The solution to this problem is to cancel the kevent before executing free_netdev().
Затронутые продукты
Ссылки
- CVE-2025-68312
- SUSE Bug 1255171
Описание
In the Linux kernel, the following vulnerability has been resolved: x86/CPU/AMD: Add RDSEED fix for Zen5 There's an issue with RDSEED's 16-bit and 32-bit register output variants on Zen5 which return a random value of 0 "at a rate inconsistent with randomness while incorrectly signaling success (CF=1)". Search the web for AMD-SB-7055 for more detail. Add a fix glue which checks microcode revisions. [ bp: Add microcode revisions checking, rewrite. ]
Затронутые продукты
Ссылки
- CVE-2025-68313
- SUSE Bug 1255415
Описание
In the Linux kernel, the following vulnerability has been resolved: io_uring/zctx: check chained notif contexts Send zc only links ubuf_info for requests coming from the same context. There are some ambiguous syz reports, so let's check the assumption on notification completion.
Затронутые продукты
Ссылки
- CVE-2025-68317
- SUSE Bug 1255354
Описание
In the Linux kernel, the following vulnerability has been resolved: usb: renesas_usbhs: Fix synchronous external abort on unbind A synchronous external abort occurs on the Renesas RZ/G3S SoC if unbind is executed after the configuration sequence described above: modprobe usb_f_ecm modprobe libcomposite modprobe configfs cd /sys/kernel/config/usb_gadget mkdir -p g1 cd g1 echo "0x1d6b" > idVendor echo "0x0104" > idProduct mkdir -p strings/0x409 echo "0123456789" > strings/0x409/serialnumber echo "Renesas." > strings/0x409/manufacturer echo "Ethernet Gadget" > strings/0x409/product mkdir -p functions/ecm.usb0 mkdir -p configs/c.1 mkdir -p configs/c.1/strings/0x409 echo "ECM" > configs/c.1/strings/0x409/configuration if [ ! -L configs/c.1/ecm.usb0 ]; then ln -s functions/ecm.usb0 configs/c.1 fi echo 11e20000.usb > UDC echo 11e20000.usb > /sys/bus/platform/drivers/renesas_usbhs/unbind The displayed trace is as follows: Internal error: synchronous external abort: 0000000096000010 [#1] SMP CPU: 0 UID: 0 PID: 188 Comm: sh Tainted: G M 6.17.0-rc7-next-20250922-00010-g41050493b2bd #55 PREEMPT Tainted: [M]=MACHINE_CHECK Hardware name: Renesas SMARC EVK version 2 based on r9a08g045s33 (DT) pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : usbhs_sys_function_pullup+0x10/0x40 [renesas_usbhs] lr : usbhsg_update_pullup+0x3c/0x68 [renesas_usbhs] sp : ffff8000838b3920 x29: ffff8000838b3920 x28: ffff00000d585780 x27: 0000000000000000 x26: 0000000000000000 x25: 0000000000000000 x24: ffff00000c3e3810 x23: ffff00000d5e5c80 x22: ffff00000d5e5d40 x21: 0000000000000000 x20: 0000000000000000 x19: ffff00000d5e5c80 x18: 0000000000000020 x17: 2e30303230316531 x16: 312d7968703a7968 x15: 3d454d414e5f4344 x14: 000000000000002c x13: 0000000000000000 x12: 0000000000000000 x11: ffff00000f358f38 x10: ffff00000f358db0 x9 : ffff00000b41f418 x8 : 0101010101010101 x7 : 7f7f7f7f7f7f7f7f x6 : fefefeff6364626d x5 : 8080808000000000 x4 : 000000004b5ccb9d x3 : 0000000000000000 x2 : 0000000000000000 x1 : ffff800083790000 x0 : ffff00000d5e5c80 Call trace: usbhs_sys_function_pullup+0x10/0x40 [renesas_usbhs] (P) usbhsg_pullup+0x4c/0x7c [renesas_usbhs] usb_gadget_disconnect_locked+0x48/0xd4 gadget_unbind_driver+0x44/0x114 device_remove+0x4c/0x80 device_release_driver_internal+0x1c8/0x224 device_release_driver+0x18/0x24 bus_remove_device+0xcc/0x10c device_del+0x14c/0x404 usb_del_gadget+0x88/0xc0 usb_del_gadget_udc+0x18/0x30 usbhs_mod_gadget_remove+0x24/0x44 [renesas_usbhs] usbhs_mod_remove+0x20/0x30 [renesas_usbhs] usbhs_remove+0x98/0xdc [renesas_usbhs] platform_remove+0x20/0x30 device_remove+0x4c/0x80 device_release_driver_internal+0x1c8/0x224 device_driver_detach+0x18/0x24 unbind_store+0xb4/0xb8 drv_attr_store+0x24/0x38 sysfs_kf_write+0x7c/0x94 kernfs_fop_write_iter+0x128/0x1b8 vfs_write+0x2ac/0x350 ksys_write+0x68/0xfc __arm64_sys_write+0x1c/0x28 invoke_syscall+0x48/0x110 el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x34/0xf0 el0t_64_sync_handler+0xa0/0xe4 el0t_64_sync+0x198/0x19c Code: 7100003f 1a9f07e1 531c6c22 f9400001 (79400021) ---[ end trace 0000000000000000 ]--- note: sh[188] exited with irqs disabled note: sh[188] exited with preempt_count 1 The issue occurs because usbhs_sys_function_pullup(), which accesses the IP registers, is executed after the USBHS clocks have been disabled. The problem is reproducible on the Renesas RZ/G3S SoC starting with the addition of module stop in the clock enable/disable APIs. With module stop functionality enabled, a bus error is expected if a master accesses a module whose clock has been stopped and module stop activated. Disable the IP clocks at the end of remove.
Затронутые продукты
Ссылки
- CVE-2025-68327
- SUSE Bug 1255488
Описание
In the Linux kernel, the following vulnerability has been resolved: firmware: stratix10-svc: fix bug in saving controller data Fix the incorrect usage of platform_set_drvdata and dev_set_drvdata. They both are of the same data and overrides each other. This resulted in the rmmod of the svc driver to fail and throw a kernel panic for kthread_stop and fifo free.
Затронутые продукты
Ссылки
- CVE-2025-68328
- SUSE Bug 1255489
Описание
In the Linux kernel, the following vulnerability has been resolved: iio: accel: bmc150: Fix irq assumption regression The code in bmc150-accel-core.c unconditionally calls bmc150_accel_set_interrupt() in the iio_buffer_setup_ops, such as on the runtime PM resume path giving a kernel splat like this if the device has no interrupts: Unable to handle kernel NULL pointer dereference at virtual address 00000001 when read PC is at bmc150_accel_set_interrupt+0x98/0x194 LR is at __pm_runtime_resume+0x5c/0x64 (...) Call trace: bmc150_accel_set_interrupt from bmc150_accel_buffer_postenable+0x40/0x108 bmc150_accel_buffer_postenable from __iio_update_buffers+0xbe0/0xcbc __iio_update_buffers from enable_store+0x84/0xc8 enable_store from kernfs_fop_write_iter+0x154/0x1b4 This bug seems to have been in the driver since the beginning, but it only manifests recently, I do not know why. Store the IRQ number in the state struct, as this is a common pattern in other drivers, then use this to determine if we have IRQ support or not.
Затронутые продукты
Ссылки
- CVE-2025-68330
- SUSE Bug 1255493
Описание
In the Linux kernel, the following vulnerability has been resolved: usb: uas: fix urb unmapping issue when the uas device is remove during ongoing data transfer When a UAS device is unplugged during data transfer, there is a probability of a system panic occurring. The root cause is an access to an invalid memory address during URB callback handling. Specifically, this happens when the dma_direct_unmap_sg() function is called within the usb_hcd_unmap_urb_for_dma() interface, but the sg->dma_address field is 0 and the sg data structure has already been freed. The SCSI driver sends transfer commands by invoking uas_queuecommand_lck() in uas.c, using the uas_submit_urbs() function to submit requests to USB. Within the uas_submit_urbs() implementation, three URBs (sense_urb, data_urb, and cmd_urb) are sequentially submitted. Device removal may occur at any point during uas_submit_urbs execution, which may result in URB submission failure. However, some URBs might have been successfully submitted before the failure, and uas_submit_urbs will return the -ENODEV error code in this case. The current error handling directly calls scsi_done(). In the SCSI driver, this eventually triggers scsi_complete() to invoke scsi_end_request() for releasing the sgtable. The successfully submitted URBs, when being unlinked to giveback, call usb_hcd_unmap_urb_for_dma() in hcd.c, leading to exceptions during sg unmapping operations since the sg data structure has already been freed. This patch modifies the error condition check in the uas_submit_urbs() function. When a UAS device is removed but one or more URBs have already been successfully submitted to USB, it avoids immediately invoking scsi_done() and save the cmnd to devinfo->cmnd array. If the successfully submitted URBs is completed before devinfo->resetting being set, then the scsi_done() function will be called within uas_try_complete() after all pending URB operations are finalized. Otherwise, the scsi_done() function will be called within uas_zap_pending(), which is executed after usb_kill_anchored_urbs(). The error handling only takes effect when uas_queuecommand_lck() calls uas_submit_urbs() and returns the error value -ENODEV . In this case, the device is disconnected, and the flow proceeds to uas_disconnect(), where uas_zap_pending() is invoked to call uas_try_complete().
Затронутые продукты
Ссылки
- CVE-2025-68331
- SUSE Bug 1255495
Описание
In the Linux kernel, the following vulnerability has been resolved: comedi: c6xdigio: Fix invalid PNP driver unregistration The Comedi low-level driver "c6xdigio" seems to be for a parallel port connected device. When the Comedi core calls the driver's Comedi "attach" handler `c6xdigio_attach()` to configure a Comedi to use this driver, it tries to enable the parallel port PNP resources by registering a PNP driver with `pnp_register_driver()`, but ignores the return value. (The `struct pnp_driver` it uses has only the `name` and `id_table` members filled in.) The driver's Comedi "detach" handler `c6xdigio_detach()` unconditionally unregisters the PNP driver with `pnp_unregister_driver()`. It is possible for `c6xdigio_attach()` to return an error before it calls `pnp_register_driver()` and it is possible for the call to `pnp_register_driver()` to return an error (that is ignored). In both cases, the driver should not be calling `pnp_unregister_driver()` as it does in `c6xdigio_detach()`. (Note that `c6xdigio_detach()` will be called by the Comedi core if `c6xdigio_attach()` returns an error, or if the Comedi core decides to detach the Comedi device from the driver for some other reason.) The unconditional call to `pnp_unregister_driver()` without a previous successful call to `pnp_register_driver()` will cause `driver_unregister()` to issue a warning "Unexpected driver unregister!". This was detected by Syzbot [1]. Also, the PNP driver registration and unregistration should be done at module init and exit time, respectively, not when attaching or detaching Comedi devices to the driver. (There might be more than one Comedi device being attached to the driver, although that is unlikely.) Change the driver to do the PNP driver registration at module init time, and the unregistration at module exit time. Since `c6xdigio_detach()` now only calls `comedi_legacy_detach()`, remove the function and change the Comedi driver "detach" handler to `comedi_legacy_detach`. ------------------------------------------- [1] Syzbot sample crash report: Unexpected driver unregister! WARNING: CPU: 0 PID: 5970 at drivers/base/driver.c:273 driver_unregister drivers/base/driver.c:273 [inline] WARNING: CPU: 0 PID: 5970 at drivers/base/driver.c:273 driver_unregister+0x90/0xb0 drivers/base/driver.c:270 Modules linked in: CPU: 0 UID: 0 PID: 5970 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/02/2025 RIP: 0010:driver_unregister drivers/base/driver.c:273 [inline] RIP: 0010:driver_unregister+0x90/0xb0 drivers/base/driver.c:270 Code: 48 89 ef e8 c2 e6 82 fc 48 89 df e8 3a 93 ff ff 5b 5d e9 c3 6d d9 fb e8 be 6d d9 fb 90 48 c7 c7 e0 f8 1f 8c e8 51 a2 97 fb 90 <0f> 0b 90 90 5b 5d e9 a5 6d d9 fb e8 e0 f4 41 fc eb 94 e8 d9 f4 41 RSP: 0018:ffffc9000373f9a0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffffffff8ff24720 RCX: ffffffff817b6ee8 RDX: ffff88807c932480 RSI: ffffffff817b6ef5 RDI: 0000000000000001 RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000001 R12: ffffffff8ff24660 R13: dffffc0000000000 R14: 0000000000000000 R15: ffff88814cca0000 FS: 000055556dab1500(0000) GS:ffff8881249d9000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055f77f285cd0 CR3: 000000007d871000 CR4: 00000000003526f0 Call Trace: <TASK> comedi_device_detach_locked+0x12f/0xa50 drivers/comedi/drivers.c:207 comedi_device_detach+0x67/0xb0 drivers/comedi/drivers.c:215 comedi_device_attach+0x43d/0x900 drivers/comedi/drivers.c:1011 do_devconfig_ioctl+0x1b1/0x710 drivers/comedi/comedi_fops.c:872 comedi_unlocked_ioctl+0x165d/0x2f00 drivers/comedi/comedi_fops.c:2178 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl fs/ioctl.c:583 [inline] __x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_sys ---truncated---
Затронутые продукты
Ссылки
- CVE-2025-68332
- SUSE Bug 1255483
Описание
In the Linux kernel, the following vulnerability has been resolved: comedi: pcl818: fix null-ptr-deref in pcl818_ai_cancel() Syzbot identified an issue [1] in pcl818_ai_cancel(), which stems from the fact that in case of early device detach via pcl818_detach(), subdevice dev->read_subdev may not have initialized its pointer to &struct comedi_async as intended. Thus, any such dereferencing of &s->async->cmd will lead to general protection fault and kernel crash. Mitigate this problem by removing a call to pcl818_ai_cancel() from pcl818_detach() altogether. This way, if the subdevice setups its support for async commands, everything async-related will be handled via subdevice's own ->cancel() function in comedi_device_detach_locked() even before pcl818_detach(). If no support for asynchronous commands is provided, there is no need to cancel anything either. [1] Syzbot crash: Oops: general protection fault, probably for non-canonical address 0xdffffc0000000005: 0000 [#1] SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000028-0x000000000000002f] CPU: 1 UID: 0 PID: 6050 Comm: syz.0.18 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/18/2025 RIP: 0010:pcl818_ai_cancel+0x69/0x3f0 drivers/comedi/drivers/pcl818.c:762 ... Call Trace: <TASK> pcl818_detach+0x66/0xd0 drivers/comedi/drivers/pcl818.c:1115 comedi_device_detach_locked+0x178/0x750 drivers/comedi/drivers.c:207 do_devconfig_ioctl drivers/comedi/comedi_fops.c:848 [inline] comedi_unlocked_ioctl+0xcde/0x1020 drivers/comedi/comedi_fops.c:2178 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] ...
Затронутые продукты
Ссылки
- CVE-2025-68335
- SUSE Bug 1255480
Описание
In the Linux kernel, the following vulnerability has been resolved: atm/fore200e: Fix possible data race in fore200e_open() Protect access to fore200e->available_cell_rate with rate_mtx lock in the error handling path of fore200e_open() to prevent a data race. The field fore200e->available_cell_rate is a shared resource used to track available bandwidth. It is concurrently accessed by fore200e_open(), fore200e_close(), and fore200e_change_qos(). In fore200e_open(), the lock rate_mtx is correctly held when subtracting vcc->qos.txtp.max_pcr from available_cell_rate to reserve bandwidth. However, if the subsequent call to fore200e_activate_vcin() fails, the function restores the reserved bandwidth by adding back to available_cell_rate without holding the lock. This introduces a race condition because available_cell_rate is a global device resource shared across all VCCs. If the error path in fore200e_open() executes concurrently with operations like fore200e_close() or fore200e_change_qos() on other VCCs, a read-modify-write race occurs. Specifically, the error path reads the rate without the lock. If another CPU acquires the lock and modifies the rate (e.g., releasing bandwidth in fore200e_close()) between this read and the subsequent write, the error path will overwrite the concurrent update with a stale value. This results in incorrect bandwidth accounting.
Затронутые продукты
Ссылки
- CVE-2025-68339
- SUSE Bug 1255505
Описание
In the Linux kernel, the following vulnerability has been resolved: team: Move team device type change at the end of team_port_add Attempting to add a port device that is already up will expectedly fail, but not before modifying the team device header_ops. In the case of the syzbot reproducer the gre0 device is already in state UP when it attempts to add it as a port device of team0, this fails but before that header_ops->create of team0 is changed from eth_header to ipgre_header in the call to team_dev_type_check_change. Later when we end up in ipgre_header() struct ip_tunnel* points to nonsense as the private data of the device still holds a struct team. Example sequence of iproute2 commands to reproduce the hang/BUG(): ip link add dev team0 type team ip link add dev gre0 type gre ip link set dev gre0 up ip link set dev gre0 master team0 ip link set dev team0 up ping -I team0 1.1.1.1 Move team_dev_type_check_change down where all other checks have passed as it changes the dev type with no way to restore it in case one of the checks that follow it fail. Also make sure to preserve the origial mtu assignment: - If port_dev is not the same type as dev, dev takes mtu from port_dev - If port_dev is the same type as dev, port_dev takes mtu from dev This is done by adding a conditional before the call to dev_set_mtu to prevent it from assigning port_dev->mtu = dev->mtu and instead letting team_dev_type_check_change assign dev->mtu = port_dev->mtu. The conditional is needed because the patch moves the call to team_dev_type_check_change past dev_set_mtu. Testing: - team device driver in-tree selftests - Add/remove various devices as slaves of team device - syzbot
Затронутые продукты
Ссылки
- CVE-2025-68340
- SUSE Bug 1255507
Описание
In the Linux kernel, the following vulnerability has been resolved: can: gs_usb: gs_usb_receive_bulk_callback(): check actual_length before accessing data The URB received in gs_usb_receive_bulk_callback() contains a struct gs_host_frame. The length of the data after the header depends on the gs_host_frame hf::flags and the active device features (e.g. time stamping). Introduce a new function gs_usb_get_minimum_length() and check that we have at least received the required amount of data before accessing it. Only copy the data to that skb that has actually been received. [mkl: rename gs_usb_get_minimum_length() -> +gs_usb_get_minimum_rx_length()]
Затронутые продукты
Ссылки
- CVE-2025-68342
- SUSE Bug 1255508
Описание
In the Linux kernel, the following vulnerability has been resolved: can: gs_usb: gs_usb_receive_bulk_callback(): check actual_length before accessing header The driver expects to receive a struct gs_host_frame in gs_usb_receive_bulk_callback(). Use struct_group to describe the header of the struct gs_host_frame and check that we have at least received the header before accessing any members of it. To resubmit the URB, do not dereference the pointer chain "dev->parent->hf_size_rx" but use "parent->hf_size_rx" instead. Since "urb->context" contains "parent", it is always defined, while "dev" is not defined if the URB it too short.
Затронутые продукты
Ссылки
- CVE-2025-68343
- SUSE Bug 1255509
Описание
In the Linux kernel, the following vulnerability has been resolved: ALSA: wavefront: Fix integer overflow in sample size validation The wavefront_send_sample() function has an integer overflow issue when validating sample size. The header->size field is u32 but gets cast to int for comparison with dev->freemem Fix by using unsigned comparison to avoid integer overflow.
Затронутые продукты
Ссылки
- CVE-2025-68344
- SUSE Bug 1255816
Описание
In the Linux kernel, the following vulnerability has been resolved: ALSA: hda: cs35l41: Fix NULL pointer dereference in cs35l41_hda_read_acpi() The acpi_get_first_physical_node() function can return NULL, in which case the get_device() function also returns NULL, but this value is then dereferenced without checking,so add a check to prevent a crash. Found by Linux Verification Center (linuxtesting.org) with SVACE.
Затронутые продукты
Ссылки
- CVE-2025-68345
- SUSE Bug 1255601
Описание
In the Linux kernel, the following vulnerability has been resolved: ALSA: dice: fix buffer overflow in detect_stream_formats() The function detect_stream_formats() reads the stream_count value directly from a FireWire device without validating it. This can lead to out-of-bounds writes when a malicious device provides a stream_count value greater than MAX_STREAMS. Fix by applying the same validation to both TX and RX stream counts in detect_stream_formats().
Затронутые продукты
Ссылки
- CVE-2025-68346
- SUSE Bug 1255603
Описание
In the Linux kernel, the following vulnerability has been resolved: ALSA: firewire-motu: fix buffer overflow in hwdep read for DSP events The DSP event handling code in hwdep_read() could write more bytes to the user buffer than requested, when a user provides a buffer smaller than the event header size (8 bytes). Fix by using min_t() to clamp the copy size, This ensures we never copy more than the user requested.
Затронутые продукты
Ссылки
- CVE-2025-68347
- SUSE Bug 1255706
Описание
In the Linux kernel, the following vulnerability has been resolved: exfat: fix refcount leak in exfat_find Fix refcount leaks in `exfat_find` related to `exfat_get_dentry_set`. Function `exfat_get_dentry_set` would increase the reference counter of `es->bh` on success. Therefore, `exfat_put_dentry_set` must be called after `exfat_get_dentry_set` to ensure refcount consistency. This patch relocate two checks to avoid possible leaks.
Затронутые продукты
Ссылки
- CVE-2025-68351
- SUSE Bug 1255567
Описание
In the Linux kernel, the following vulnerability has been resolved: spi: ch341: fix out-of-bounds memory access in ch341_transfer_one Discovered by Atuin - Automated Vulnerability Discovery Engine. The 'len' variable is calculated as 'min(32, trans->len + 1)', which includes the 1-byte command header. When copying data from 'trans->tx_buf' to 'ch341->tx_buf + 1', using 'len' as the length is incorrect because: 1. It causes an out-of-bounds read from 'trans->tx_buf' (which has size 'trans->len', i.e., 'len - 1' in this context). 2. It can cause an out-of-bounds write to 'ch341->tx_buf' if 'len' is CH341_PACKET_LENGTH (32). Writing 32 bytes to ch341->tx_buf + 1 overflows the buffer. Fix this by copying 'len - 1' bytes.
Затронутые продукты
Ссылки
- CVE-2025-68352
- SUSE Bug 1255541
Описание
In the Linux kernel, the following vulnerability has been resolved: net: vxlan: prevent NULL deref in vxlan_xmit_one Neither sock4 nor sock6 pointers are guaranteed to be non-NULL in vxlan_xmit_one, e.g. if the iface is brought down. This can lead to the following NULL dereference: BUG: kernel NULL pointer dereference, address: 0000000000000010 Oops: Oops: 0000 [#1] SMP NOPTI RIP: 0010:vxlan_xmit_one+0xbb3/0x1580 Call Trace: vxlan_xmit+0x429/0x610 dev_hard_start_xmit+0x55/0xa0 __dev_queue_xmit+0x6d0/0x7f0 ip_finish_output2+0x24b/0x590 ip_output+0x63/0x110 Mentioned commits changed the code path in vxlan_xmit_one and as a side effect the sock4/6 pointer validity checks in vxlan(6)_get_route were lost. Fix this by adding back checks. Since both commits being fixed were released in the same version (v6.7) and are strongly related, bundle the fixes in a single commit.
Затронутые продукты
Ссылки
- CVE-2025-68353
- SUSE Bug 1255533
Описание
In the Linux kernel, the following vulnerability has been resolved: regulator: core: Protect regulator_supply_alias_list with regulator_list_mutex regulator_supply_alias_list was accessed without any locking in regulator_supply_alias(), regulator_register_supply_alias(), and regulator_unregister_supply_alias(). Concurrent registration, unregistration and lookups can race, leading to: 1 use-after-free if an alias entry is removed while being read, 2 duplicate entries when two threads register the same alias, 3 inconsistent alias mappings observed by consumers. Protect all traversals, insertions and deletions on regulator_supply_alias_list with the existing regulator_list_mutex.
Затронутые продукты
Ссылки
- CVE-2025-68354
- SUSE Bug 1255553
Описание
In the Linux kernel, the following vulnerability has been resolved: wifi: rtl818x: rtl8187: Fix potential buffer underflow in rtl8187_rx_cb() The rtl8187_rx_cb() calculates the rx descriptor header address by subtracting its size from the skb tail pointer. However, it does not validate if the received packet (skb->len from urb->actual_length) is large enough to contain this header. If a truncated packet is received, this will lead to a buffer underflow, reading memory before the start of the skb data area, and causing a kernel panic. Add length checks for both rtl8187 and rtl8187b descriptor headers before attempting to access them, dropping the packet cleanly if the check fails.
Затронутые продукты
Ссылки
- CVE-2025-68362
- SUSE Bug 1255611
Описание
In the Linux kernel, the following vulnerability has been resolved: bpf: Check skb->transport_header is set in bpf_skb_check_mtu The bpf_skb_check_mtu helper needs to use skb->transport_header when the BPF_MTU_CHK_SEGS flag is used: bpf_skb_check_mtu(skb, ifindex, &mtu_len, 0, BPF_MTU_CHK_SEGS) The transport_header is not always set. There is a WARN_ON_ONCE report when CONFIG_DEBUG_NET is enabled + skb->gso_size is set + bpf_prog_test_run is used: WARNING: CPU: 1 PID: 2216 at ./include/linux/skbuff.h:3071 skb_gso_validate_network_len bpf_skb_check_mtu bpf_prog_3920e25740a41171_tc_chk_segs_flag # A test in the next patch bpf_test_run bpf_prog_test_run_skb For a normal ingress skb (not test_run), skb_reset_transport_header is performed but there is plan to avoid setting it as described in commit 2170a1f09148 ("net: no longer reset transport_header in __netif_receive_skb_core()"). This patch fixes the bpf helper by checking skb_transport_header_was_set(). The check is done just before skb->transport_header is used, to avoid breaking the existing bpf prog. The WARN_ON_ONCE is limited to bpf_prog_test_run, so targeting bpf-next.
Затронутые продукты
Ссылки
- CVE-2025-68363
- SUSE Bug 1255552
Описание
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix stackmap overflow check in __bpf_get_stackid() Syzkaller reported a KASAN slab-out-of-bounds write in __bpf_get_stackid() when copying stack trace data. The issue occurs when the perf trace contains more stack entries than the stack map bucket can hold, leading to an out-of-bounds write in the bucket's data array.
Затронутые продукты
Ссылки
- CVE-2025-68378
- SUSE Bug 1255614
Описание
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix peer HE MCS assignment In ath11k_wmi_send_peer_assoc_cmd(), peer's transmit MCS is sent to firmware as receive MCS while peer's receive MCS sent as transmit MCS, which goes against firmwire's definition. While connecting to a misbehaved AP that advertises 0xffff (meaning not supported) for 160 MHz transmit MCS map, firmware crashes due to 0xffff is assigned to he_mcs->rx_mcs_set field. Ext Tag: HE Capabilities [...] Supported HE-MCS and NSS Set [...] Rx and Tx MCS Maps 160 MHz [...] Tx HE-MCS Map 160 MHz: 0xffff Swap the assignment to fix this issue. As the HE rate control mask is meant to limit our own transmit MCS, it needs to go via he_mcs->rx_mcs_set field. With the aforementioned swapping done, change is needed as well to apply it to the peer's receive MCS. Tested-on: WCN6855 hw2.1 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.41 Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.4.1-00199-QCAHKSWPL_SILICONZ-1
Затронутые продукты
Ссылки
- CVE-2025-68380
- SUSE Bug 1255580
Описание
In the Linux kernel, the following vulnerability has been resolved: crypto: asymmetric_keys - prevent overflow in asymmetric_key_generate_id Use check_add_overflow() to guard against potential integer overflows when adding the binary blob lengths and the size of an asymmetric_key_id structure and return ERR_PTR(-EOVERFLOW) accordingly. This prevents a possible buffer overflow when copying data from potentially malicious X.509 certificate fields that can be arbitrarily large, such as ASN.1 INTEGER serial numbers, issuer names, etc.
Затронутые продукты
Ссылки
- CVE-2025-68724
- SUSE Bug 1255550
Описание
In the Linux kernel, the following vulnerability has been resolved: gpu: host1x: Fix race in syncpt alloc/free Fix race condition between host1x_syncpt_alloc() and host1x_syncpt_put() by using kref_put_mutex() instead of kref_put() + manual mutex locking. This ensures no thread can acquire the syncpt_mutex after the refcount drops to zero but before syncpt_release acquires it. This prevents races where syncpoints could be allocated while still being cleaned up from a previous release. Remove explicit mutex locking in syncpt_release as kref_put_mutex() handles this atomically.
Затронутые продукты
Ссылки
- CVE-2025-68732
- SUSE Bug 1255688
- SUSE Bug 1255689
Описание
In the Linux kernel, the following vulnerability has been resolved: landlock: Fix handling of disconnected directories Disconnected files or directories can appear when they are visible and opened from a bind mount, but have been renamed or moved from the source of the bind mount in a way that makes them inaccessible from the mount point (i.e. out of scope). Previously, access rights tied to files or directories opened through a disconnected directory were collected by walking the related hierarchy down to the root of the filesystem, without taking into account the mount point because it couldn't be found. This could lead to inconsistent access results, potential access right widening, and hard-to-debug renames, especially since such paths cannot be printed. For a sandboxed task to create a disconnected directory, it needs to have write access (i.e. FS_MAKE_REG, FS_REMOVE_FILE, and FS_REFER) to the underlying source of the bind mount, and read access to the related mount point. Because a sandboxed task cannot acquire more access rights than those defined by its Landlock domain, this could lead to inconsistent access rights due to missing permissions that should be inherited from the mount point hierarchy, while inheriting permissions from the filesystem hierarchy hidden by this mount point instead. Landlock now handles files and directories opened from disconnected directories by taking into account the filesystem hierarchy when the mount point is not found in the hierarchy walk, and also always taking into account the mount point from which these disconnected directories were opened. This ensures that a rename is not allowed if it would widen access rights [1]. The rationale is that, even if disconnected hierarchies might not be visible or accessible to a sandboxed task, relying on the collected access rights from them improves the guarantee that access rights will not be widened during a rename because of the access right comparison between the source and the destination (see LANDLOCK_ACCESS_FS_REFER). It may look like this would grant more access on disconnected files and directories, but the security policies are always enforced for all the evaluated hierarchies. This new behavior should be less surprising to users and safer from an access control perspective. Remove a wrong WARN_ON_ONCE() canary in collect_domain_accesses() and fix the related comment. Because opened files have their access rights stored in the related file security properties, there is no impact for disconnected or unlinked files.
Затронутые продукты
Ссылки
- CVE-2025-68736
- SUSE Bug 1255698
Описание
In the Linux kernel, the following vulnerability has been resolved: ima: Handle error code returned by ima_filter_rule_match() In ima_match_rules(), if ima_filter_rule_match() returns -ENOENT due to the rule being NULL, the function incorrectly skips the 'if (!rc)' check and sets 'result = true'. The LSM rule is considered a match, causing extra files to be measured by IMA. This issue can be reproduced in the following scenario: After unloading the SELinux policy module via 'semodule -d', if an IMA measurement is triggered before ima_lsm_rules is updated, in ima_match_rules(), the first call to ima_filter_rule_match() returns -ESTALE. This causes the code to enter the 'if (rc == -ESTALE && !rule_reinitialized)' block, perform ima_lsm_copy_rule() and retry. In ima_lsm_copy_rule(), since the SELinux module has been removed, the rule becomes NULL, and the second call to ima_filter_rule_match() returns -ENOENT. This bypasses the 'if (!rc)' check and results in a false match. Call trace: selinux_audit_rule_match+0x310/0x3b8 security_audit_rule_match+0x60/0xa0 ima_match_rules+0x2e4/0x4a0 ima_match_policy+0x9c/0x1e8 ima_get_action+0x48/0x60 process_measurement+0xf8/0xa98 ima_bprm_check+0x98/0xd8 security_bprm_check+0x5c/0x78 search_binary_handler+0x6c/0x318 exec_binprm+0x58/0x1b8 bprm_execve+0xb8/0x130 do_execveat_common.isra.0+0x1a8/0x258 __arm64_sys_execve+0x48/0x68 invoke_syscall+0x50/0x128 el0_svc_common.constprop.0+0xc8/0xf0 do_el0_svc+0x24/0x38 el0_svc+0x44/0x200 el0t_64_sync_handler+0x100/0x130 el0t_64_sync+0x3c8/0x3d0 Fix this by changing 'if (!rc)' to 'if (rc <= 0)' to ensure that error codes like -ENOENT do not bypass the check and accidentally result in a successful match.
Затронутые продукты
Ссылки
- CVE-2025-68740
- SUSE Bug 1255812
Описание
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix invalid prog->stats access when update_effective_progs fails Syzkaller triggers an invalid memory access issue following fault injection in update_effective_progs. The issue can be described as follows: __cgroup_bpf_detach update_effective_progs compute_effective_progs bpf_prog_array_alloc <-- fault inject purge_effective_progs /* change to dummy_bpf_prog */ array->items[index] = &dummy_bpf_prog.prog ---softirq start--- __do_softirq ... __cgroup_bpf_run_filter_skb __bpf_prog_run_save_cb bpf_prog_run stats = this_cpu_ptr(prog->stats) /* invalid memory access */ flags = u64_stats_update_begin_irqsave(&stats->syncp) ---softirq end--- static_branch_dec(&cgroup_bpf_enabled_key[atype]) The reason is that fault injection caused update_effective_progs to fail and then changed the original prog into dummy_bpf_prog.prog in purge_effective_progs. Then a softirq came, and accessing the members of dummy_bpf_prog.prog in the softirq triggers invalid mem access. To fix it, skip updating stats when stats is NULL.
Затронутые продукты
Ссылки
- CVE-2025-68742
- SUSE Bug 1255707
Описание
In the Linux kernel, the following vulnerability has been resolved: bpf: Free special fields when update [lru_,]percpu_hash maps As [lru_,]percpu_hash maps support BPF_KPTR_{REF,PERCPU}, missing calls to 'bpf_obj_free_fields()' in 'pcpu_copy_value()' could cause the memory referenced by BPF_KPTR_{REF,PERCPU} fields to be held until the map gets freed. Fix this by calling 'bpf_obj_free_fields()' after 'copy_map_value[,_long]()' in 'pcpu_copy_value()'.
Затронутые продукты
Ссылки
- CVE-2025-68744
- SUSE Bug 1255709
Описание
In the Linux kernel, the following vulnerability has been resolved: spi: tegra210-quad: Fix timeout handling When the CPU that the QSPI interrupt handler runs on (typically CPU 0) is excessively busy, it can lead to rare cases of the IRQ thread not running before the transfer timeout is reached. While handling the timeouts, any pending transfers are cleaned up and the message that they correspond to is marked as failed, which leaves the curr_xfer field pointing at stale memory. To avoid this, clear curr_xfer to NULL upon timeout and check for this condition when the IRQ thread is finally run. While at it, also make sure to clear interrupts on failure so that new interrupts can be run. A better, more involved, fix would move the interrupt clearing into a hard IRQ handler. Ideally we would also want to signal that the IRQ thread no longer needs to be run after the timeout is hit to avoid the extra check for a valid transfer.
Затронутые продукты
Ссылки
- CVE-2025-68746
- SUSE Bug 1255722
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/panthor: Fix UAF on kernel BO VA nodes If the MMU is down, panthor_vm_unmap_range() might return an error. We expect the page table to be updated still, and if the MMU is blocked, the rest of the GPU should be blocked too, so no risk of accessing physical memory returned to the system (which the current code doesn't cover for anyway). Proceed with the rest of the cleanup instead of bailing out and leaving the va_node inserted in the drm_mm, which leads to UAF when other adjacent nodes are removed from the drm_mm tree.
Затронутые продукты
Ссылки
- CVE-2025-68747
- SUSE Bug 1255723
- SUSE Bug 1257628
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/panthor: Fix UAF race between device unplug and FW event processing The function panthor_fw_unplug() will free the FW memory sections. The problem is that there could still be pending FW events which are yet not handled at this point. process_fw_events_work() can in this case try to access said freed memory. Simply call disable_work_sync() to both drain and prevent future invocation of process_fw_events_work().
Затронутые продукты
Ссылки
- CVE-2025-68748
- SUSE Bug 1255813
Описание
In the Linux kernel, the following vulnerability has been resolved: accel/ivpu: Fix race condition when unbinding BOs Fix 'Memory manager not clean during takedown' warning that occurs when ivpu_gem_bo_free() removes the BO from the BOs list before it gets unmapped. Then file_priv_unbind() triggers a warning in drm_mm_takedown() during context teardown. Protect the unmapping sequence with bo_list_lock to ensure the BO is always fully unmapped when removed from the list. This ensures the BO is either fully unmapped at context teardown time or present on the list and unmapped by file_priv_unbind().
Затронутые продукты
Ссылки
- CVE-2025-68749
- SUSE Bug 1255724
Описание
In the Linux kernel, the following vulnerability has been resolved: usb: potential integer overflow in usbg_make_tpg() The variable tpgt in usbg_make_tpg() is defined as unsigned long and is assigned to tpgt->tport_tpgt, which is defined as u16. This may cause an integer overflow when tpgt is greater than USHRT_MAX (65535). I haven't tried to trigger it myself, but it is possible to trigger it by calling usbg_make_tpg() with a large value for tpgt. I modified the type of tpgt to match tpgt->tport_tpgt and adjusted the relevant code accordingly. This patch is similar to commit 59c816c1f24d ("vhost/scsi: potential memory corruption").
Затронутые продукты
Ссылки
- CVE-2025-68750
- SUSE Bug 1255814
Описание
In the Linux kernel, the following vulnerability has been resolved: ALSA: firewire-motu: add bounds check in put_user loop for DSP events In the DSP event handling code, a put_user() loop copies event data. When the user buffer size is not aligned to 4 bytes, it could overwrite beyond the buffer boundary. Fix by adding a bounds check before put_user().
Затронутые продукты
Ссылки
- CVE-2025-68753
- SUSE Bug 1256238
Описание
In the Linux kernel, the following vulnerability has been resolved: drm/vgem-fence: Fix potential deadlock on release A timer that expires a vgem fence automatically in 10 seconds is now released with timer_delete_sync() from fence->ops.release() called on last dma_fence_put(). In some scenarios, it can run in IRQ context, which is not safe unless TIMER_IRQSAFE is used. One potentially risky scenario was demonstrated in Intel DRM CI trybot, BAT run on machine bat-adlp-6, while working on new IGT subtests syncobj_timeline@stress-* as user space replacements of some problematic test cases of a dma-fence-chain selftest [1]. [117.004338] ================================ [117.004340] WARNING: inconsistent lock state [117.004342] 6.17.0-rc7-CI_DRM_17270-g7644974e648c+ #1 Tainted: G S U [117.004346] -------------------------------- [117.004347] inconsistent {HARDIRQ-ON-W} -> {IN-HARDIRQ-W} usage. [117.004349] swapper/0/0 [HC1[1]:SC1[1]:HE0:SE0] takes: [117.004352] ffff888138f86aa8 ((&fence->timer)){?.-.}-{0:0}, at: __timer_delete_sync+0x4b/0x190 [117.004361] {HARDIRQ-ON-W} state was registered at: [117.004363] lock_acquire+0xc4/0x2e0 [117.004366] call_timer_fn+0x80/0x2a0 [117.004368] __run_timers+0x231/0x310 [117.004370] run_timer_softirq+0x76/0xe0 [117.004372] handle_softirqs+0xd4/0x4d0 [117.004375] __irq_exit_rcu+0x13f/0x160 [117.004377] irq_exit_rcu+0xe/0x20 [117.004379] sysvec_apic_timer_interrupt+0xa0/0xc0 [117.004382] asm_sysvec_apic_timer_interrupt+0x1b/0x20 [117.004385] cpuidle_enter_state+0x12b/0x8a0 [117.004388] cpuidle_enter+0x2e/0x50 [117.004393] call_cpuidle+0x22/0x60 [117.004395] do_idle+0x1fd/0x260 [117.004398] cpu_startup_entry+0x29/0x30 [117.004401] start_secondary+0x12d/0x160 [117.004404] common_startup_64+0x13e/0x141 [117.004407] irq event stamp: 2282669 [117.004409] hardirqs last enabled at (2282668): [<ffffffff8289db71>] _raw_spin_unlock_irqrestore+0x51/0x80 [117.004414] hardirqs last disabled at (2282669): [<ffffffff82882021>] sysvec_irq_work+0x11/0xc0 [117.004419] softirqs last enabled at (2254702): [<ffffffff8289fd00>] __do_softirq+0x10/0x18 [117.004423] softirqs last disabled at (2254725): [<ffffffff813d4ddf>] __irq_exit_rcu+0x13f/0x160 [117.004426] other info that might help us debug this: [117.004429] Possible unsafe locking scenario: [117.004432] CPU0 [117.004433] ---- [117.004434] lock((&fence->timer)); [117.004436] <Interrupt> [117.004438] lock((&fence->timer)); [117.004440] *** DEADLOCK *** [117.004443] 1 lock held by swapper/0/0: [117.004445] #0: ffffc90000003d50 ((&fence->timer)){?.-.}-{0:0}, at: call_timer_fn+0x7a/0x2a0 [117.004450] stack backtrace: [117.004453] CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Tainted: G S U 6.17.0-rc7-CI_DRM_17270-g7644974e648c+ #1 PREEMPT(voluntary) [117.004455] Tainted: [S]=CPU_OUT_OF_SPEC, [U]=USER [117.004455] Hardware name: Intel Corporation Alder Lake Client Platform/AlderLake-P DDR4 RVP, BIOS RPLPFWI1.R00.4035.A00.2301200723 01/20/2023 [117.004456] Call Trace: [117.004456] <IRQ> [117.004457] dump_stack_lvl+0x91/0xf0 [117.004460] dump_stack+0x10/0x20 [117.004461] print_usage_bug.part.0+0x260/0x360 [117.004463] mark_lock+0x76e/0x9c0 [117.004465] ? register_lock_class+0x48/0x4a0 [117.004467] __lock_acquire+0xbc3/0x2860 [117.004469] lock_acquire+0xc4/0x2e0 [117.004470] ? __timer_delete_sync+0x4b/0x190 [117.004472] ? __timer_delete_sync+0x4b/0x190 [117.004473] __timer_delete_sync+0x68/0x190 [117.004474] ? __timer_delete_sync+0x4b/0x190 [117.004475] timer_delete_sync+0x10/0x20 [117.004476] vgem_fence_release+0x19/0x30 [vgem] [117.004478] dma_fence_release+0xc1/0x3b0 [117.004480] ? dma_fence_release+0xa1/0x3b0 [117.004481] dma_fence_chain_release+0xe7/0x130 [117.004483] dma_fence_release+0xc1/0x3b0 [117.004484] ? _raw_spin_unlock_irqrestore+0x27/0x80 [117.004485] dma_fence_chain_irq_work+0x59/0x80 [117.004487] irq_work_single+0x75/0xa0 [117.004490] irq_work_r ---truncated---
Затронутые продукты
Ссылки
- CVE-2025-68757
- SUSE Bug 1255943
Описание
In the Linux kernel, the following vulnerability has been resolved: backlight: led-bl: Add devlink to supplier LEDs LED Backlight is a consumer of one or multiple LED class devices, but devlink is currently unable to create correct supplier-producer links when the supplier is a class device. It creates instead a link where the supplier is the parent of the expected device. One consequence is that removal order is not correctly enforced. Issues happen for example with the following sections in a device tree overlay: // An LED driver chip pca9632@62 { compatible = "nxp,pca9632"; reg = <0x62>; // ... addon_led_pwm: led-pwm@3 { reg = <3>; label = "addon:led:pwm"; }; }; backlight-addon { compatible = "led-backlight"; leds = <&addon_led_pwm>; brightness-levels = <255>; default-brightness-level = <255>; }; In this example, the devlink should be created between the backlight-addon (consumer) and the pca9632@62 (supplier). Instead it is created between the backlight-addon (consumer) and the parent of the pca9632@62, which is typically the I2C bus adapter. On removal of the above overlay, the LED driver can be removed before the backlight device, resulting in: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010 ... Call trace: led_put+0xe0/0x140 devm_led_release+0x6c/0x98 Another way to reproduce the bug without any device tree overlays is unbinding the LED class device (pca9632@62) before unbinding the consumer (backlight-addon): echo 11-0062 >/sys/bus/i2c/drivers/leds-pca963x/unbind echo ...backlight-dock >/sys/bus/platform/drivers/led-backlight/unbind Fix by adding a devlink between the consuming led-backlight device and the supplying LED device, as other drivers and subsystems do as well.
Затронутые продукты
Ссылки
- CVE-2025-68758
- SUSE Bug 1255944
Описание
In the Linux kernel, the following vulnerability has been resolved: wifi: rtl818x: Fix potential memory leaks in rtl8180_init_rx_ring() In rtl8180_init_rx_ring(), memory is allocated for skb packets and DMA allocations in a loop. When an allocation fails, the previously successful allocations are not freed on exit. Fix that by jumping to err_free_rings label on error, which calls rtl8180_free_rx_ring() to free the allocations. Remove the free of rx_ring in rtl8180_init_rx_ring() error path, and set the freed priv->rx_buf entry to null, to avoid double free.
Затронутые продукты
Ссылки
- CVE-2025-68759
- SUSE Bug 1255934
Описание
In the Linux kernel, the following vulnerability has been resolved: mt76: mt7615: Fix memory leak in mt7615_mcu_wtbl_sta_add() In mt7615_mcu_wtbl_sta_add(), an skb sskb is allocated. If the subsequent call to mt76_connac_mcu_alloc_wtbl_req() fails, the function returns an error without freeing sskb, leading to a memory leak. Fix this by calling dev_kfree_skb() on sskb in the error handling path to ensure it is properly released.
Затронутые продукты
Ссылки
- CVE-2025-68765
- SUSE Bug 1255931
Описание
In the Linux kernel, the following vulnerability has been resolved: irqchip/mchp-eic: Fix error code in mchp_eic_domain_alloc() If irq_domain_translate_twocell() sets "hwirq" to >= MCHP_EIC_NIRQ (2) then it results in an out of bounds access. The code checks for invalid values, but doesn't set the error code. Return -EINVAL in that case, instead of returning success.
Затронутые продукты
Ссылки
- CVE-2025-68766
- SUSE Bug 1255932
Описание
In the Linux kernel, the following vulnerability has been resolved: RDMA/core: Check for the presence of LS_NLA_TYPE_DGID correctly The netlink response for RDMA_NL_LS_OP_IP_RESOLVE should always have a LS_NLA_TYPE_DGID attribute, it is invalid if it does not. Use the nl parsing logic properly and call nla_parse_deprecated() to fill the nlattrs array and then directly index that array to get the data for the DGID. Just fail if it is NULL. Remove the for loop searching for the nla, and squash the validation and parsing into one function. Fixes an uninitialized read from the stack triggered by userspace if it does not provide the DGID to a kernel initiated RDMA_NL_LS_OP_IP_RESOLVE query. BUG: KMSAN: uninit-value in hex_byte_pack include/linux/hex.h:13 [inline] BUG: KMSAN: uninit-value in ip6_string+0xef4/0x13a0 lib/vsprintf.c:1490 hex_byte_pack include/linux/hex.h:13 [inline] ip6_string+0xef4/0x13a0 lib/vsprintf.c:1490 ip6_addr_string+0x18a/0x3e0 lib/vsprintf.c:1509 ip_addr_string+0x245/0xee0 lib/vsprintf.c:1633 pointer+0xc09/0x1bd0 lib/vsprintf.c:2542 vsnprintf+0xf8a/0x1bd0 lib/vsprintf.c:2930 vprintk_store+0x3ae/0x1530 kernel/printk/printk.c:2279 vprintk_emit+0x307/0xcd0 kernel/printk/printk.c:2426 vprintk_default+0x3f/0x50 kernel/printk/printk.c:2465 vprintk+0x36/0x50 kernel/printk/printk_safe.c:82 _printk+0x17e/0x1b0 kernel/printk/printk.c:2475 ib_nl_process_good_ip_rsep drivers/infiniband/core/addr.c:128 [inline] ib_nl_handle_ip_res_resp+0x963/0x9d0 drivers/infiniband/core/addr.c:141 rdma_nl_rcv_msg drivers/infiniband/core/netlink.c:-1 [inline] rdma_nl_rcv_skb drivers/infiniband/core/netlink.c:239 [inline] rdma_nl_rcv+0xefa/0x11c0 drivers/infiniband/core/netlink.c:259 netlink_unicast_kernel net/netlink/af_netlink.c:1320 [inline] netlink_unicast+0xf04/0x12b0 net/netlink/af_netlink.c:1346 netlink_sendmsg+0x10b3/0x1250 net/netlink/af_netlink.c:1896 sock_sendmsg_nosec net/socket.c:714 [inline] __sock_sendmsg+0x333/0x3d0 net/socket.c:729 ____sys_sendmsg+0x7e0/0xd80 net/socket.c:2617 ___sys_sendmsg+0x271/0x3b0 net/socket.c:2671 __sys_sendmsg+0x1aa/0x300 net/socket.c:2703 __compat_sys_sendmsg net/compat.c:346 [inline] __do_compat_sys_sendmsg net/compat.c:353 [inline] __se_compat_sys_sendmsg net/compat.c:350 [inline] __ia32_compat_sys_sendmsg+0xa4/0x100 net/compat.c:350 ia32_sys_call+0x3f6c/0x4310 arch/x86/include/generated/asm/syscalls_32.h:371 do_syscall_32_irqs_on arch/x86/entry/syscall_32.c:83 [inline] __do_fast_syscall_32+0xb0/0x150 arch/x86/entry/syscall_32.c:306 do_fast_syscall_32+0x38/0x80 arch/x86/entry/syscall_32.c:331 do_SYSENTER_32+0x1f/0x30 arch/x86/entry/syscall_32.c:3
Затронутые продукты
Ссылки
- CVE-2025-71096
- SUSE Bug 1256606