Описание
PyTorch before 3.7.0 has a bernoulli_p decompose function in decompositions.py even though it lacks full consistency with the eager CPU implementation, negatively affecting nn.Dropout1d, nn.Dropout2d, and nn.Dropout3d for fallback_random=True.
| Релиз | Статус | Примечание |
|---|---|---|
| devel | needs-triage | |
| esm-apps/jammy | needs-triage | |
| jammy | needs-triage | |
| noble | DNE | |
| plucky | needs-triage | |
| questing | needs-triage | |
| upstream | needs-triage |
Показывать по
Ссылки на источники
EPSS
5.3 Medium
CVSS3
Связанные уязвимости
PyTorch before 3.7.0 has a bernoulli_p decompose function in decompositions.py even though it lacks full consistency with the eager CPU implementation, negatively affecting nn.Dropout1d, nn.Dropout2d, and nn.Dropout3d for fallback_random=True.
PyTorch before 3.7.0 has a bernoulli_p decompose function in decompositions.py even though it lacks full consistency with the eager CPU implementation, negatively affecting nn.Dropout1d, nn.Dropout2d, and nn.Dropout3d for fallback_random=True.
PyTorch before 3.7.0 has a bernoulli_p decompose function in decomposi ...
PyTorch before 3.7.0 has a bernoulli_p decompose function in decompositions.py even though it lacks full consistency with the eager CPU implementation, negatively affecting nn.Dropout1d, nn.Dropout2d, and nn.Dropout3d for fallback_random=True.
Уязвимость функции bernoulli_p decompose() фреймворка машинного обучения PyTorch, позволяющая нарушителю оказать воздействие на конфиденциальность защищаемой информации
EPSS
5.3 Medium
CVSS3