Количество 63 862
Количество 63 862
CVE-2025-59733
When decoding an OpenEXR file that uses DWAA or DWAB compression, there's an implicit assumption that all image channels have the same pixel type (and size), and that if there are four channels, the first four are "B", "G", "R" and "A". The channel parsing code can be found in decode_header. The buffer td->uncompressed_data is allocated in decode_block based on the xsize, ysize and computed current_channel_offset. The function dwa_uncompress then assumes at [5] that if there are 4 channels, these are "B", "G", "R" and "A", and in the calculations at [6] and [7] that all channels are of the same type, which matches the type of the main color channels. If we set the main color channels to a 4-byte type and add duplicate or unknown channels of the 2-byte EXR_HALF type, then the addition at [7] will increment the pointer by 4-bytes * xsize * nb_channels, which will exceed the allocated buffer. We recommend upgrading to version 8.0 or beyond.
CVE-2025-59732
When decoding an OpenEXR file that uses DWAA or DWAB compression, there's an implicit assumption that the height and width are divisible by 8. If the height or width of the image is not divisible by 8, the copy loops at [0] and [1] will continue to write until the next multiple of 8. The buffer td->uncompressed_data is allocated in decode_block based on the precise height and width of the image, so the "rounded-up" multiple of 8 in the copy loop can exceed the buffer bounds, and the write block starting at [2] can corrupt following heap memory. We recommend upgrading to version 8.0 or beyond.
CVE-2025-59731
When decoding an OpenEXR file that uses DWAA or DWAB compression, the specified raw length of run-length-encoded data is not checked when using it to calculate the output data. We read rle_raw_size from the input file at [0], we decompress and decode into the buffer td->rle_raw_data of size rle_raw_size at [1], and then at [2] we will access entries in this buffer up to (td->xsize - 1) * (td->ysize - 1) + rle_raw_size / 2, which may exceed rle_raw_size. We recommend upgrading to version 8.0 or beyond.
CVE-2025-59730
When decoding a frame for a SANM file (ANIM v0 variant), the decoded data can be larger than the buffer allocated for it. Frames encoded with codec 48 can specify their resolution (width x height). A buffer of appropriate size is allocated depending on the resolution. This codec can encode the frame contents using a run-length encoding algorithm. There are no checks that the decoded frame fits in the allocated buffer, leading to a heap-buffer-overflow. process_frame_obj initializes the buffers based on the frame resolution: We recommend upgrading to version 8.0 or beyond.
CVE-2025-59729
When parsing the header for a DHAV file, there's an integer underflow in offset calculation that leads to reading the duration from before the start of the allocated buffer. If we load a DHAV file that is larger than MAX_DURATION_BUFFER_SIZE bytes (0x100000) for example 0x101000 bytes, then at [0] we have size = 0x101000. At [1] we have end_buffer_size = 0x100000, and at [2] we have end_buffer_pos = 0x1000. The loop then scans backwards through the buffer looking for the dhav tag; when it is found, we'll calculate end_pos based on a 32-bit offset read from the buffer. There is subsequently a check [3] that end_pos is within the section of the file that has been copied into end_buffer, but it only correctly handles the cases where end_pos is before the start of the file or after the section copied into end_buffer, and not the case where end_pos is within the the file, but before the section copied into end_buffer. If we provide such an offset, (end_pos - end_buffer_pos) can u...
CVE-2025-59728
When calculating the content path in handling of MPEG-DASH manifests, there's an out-of-bounds NUL-byte write one byte past the end of the buffer.When we call xmlNodeGetContent below [0], it returns a buffer precisely allocated to match the string length, using strdup internally. If this buffer is not an empty string, it is assigned to root_url at [1].If the last (non-NUL) byte in this buffer is not '/' then we append '/' in-place at [2]. This will write two bytes into the buffer, starting at the last valid byte in the buffer, writing the NUL byte beyond the end of the allocated buffer. We recommend upgrading to version 8.0 or beyond.
CVE-2025-59692
PureVPN client applications on Linux through September 2025 mishandle firewalling. They flush the system's existing iptables rules and apply default ACCEPT policies when connecting to a VPN server. This removes firewall rules that may have been configured manually or by other software (e.g., UFW, container engines, or system security policies). Upon VPN disconnect, the original firewall state is not restored. As a result, the system may become unintentionally exposed to network traffic that was previously blocked. This affects CLI 2.0.1 and GUI 2.10.0.
CVE-2025-59691
PureVPN client applications on Linux through September 2025 allow IPv6 traffic to leak outside the VPN tunnel upon network events such as Wi-Fi reconnect or system resume. In the CLI client, the VPN auto-reconnects and claims to be connected, but IPv6 traffic is no longer routed or blocked. In the GUI client, the IPv6 connection remains functional after disconnection until the user clicks Reconnect. In both cases, the real IPv6 address is exposed to external services, violating user privacy and defeating the advertised IPv6 leak protection. This affects CLI 2.0.1 and GUI 2.10.0.
CVE-2025-59682
An issue was discovered in Django 4.2 before 4.2.25, 5.1 before 5.1.13, and 5.2 before 5.2.7. The django.utils.archive.extract() function, used by the "startapp --template" and "startproject --template" commands, allows partial directory traversal via an archive with file paths sharing a common prefix with the target directory.
CVE-2025-59681
An issue was discovered in Django 4.2 before 4.2.25, 5.1 before 5.1.13, and 5.2 before 5.2.7. QuerySet.annotate(), QuerySet.alias(), QuerySet.aggregate(), and QuerySet.extra() are subject to SQL injection in column aliases, when using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to these methods (on MySQL and MariaDB).
CVE-2025-59530
quic-go is an implementation of the QUIC protocol in Go. In versions prior to 0.49.0, 0.54.1, and 0.55.0, a misbehaving or malicious server can cause a denial-of-service (DoS) attack on the quic-go client by triggering an assertion failure, leading to a process crash. This requires no authentication and can be exploited during the handshake phase. This was observed in the wild with certain server implementations. quic-go needs to be able to handle misbehaving server implementations, including those that prematurely send a HANDSHAKE_DONE frame. Versions 0.49.0, 0.54.1, and 0.55.0 discard Initial keys when receiving a HANDSHAKE_DONE frame, thereby correctly handling premature HANDSHAKE_DONE frames.
CVE-2025-59529
Avahi is a system which facilitates service discovery on a local network via the mDNS/DNS-SD protocol suite. In versions up to and including 0.9-rc2, the simple protocol server ignores the documented client limit and accepts unlimited connections, allowing for easy local DoS. Although `CLIENTS_MAX` is defined, `server_work()` unconditionally `accept()`s and `client_new()` always appends the new client and increments `n_clients`. There is no check against the limit. When client cannot be accepted as a result of maximal socket number of avahi-daemon, it logs unconditionally error per each connection. Unprivileged local users can exhaust daemon memory and file descriptors, causing a denial of service system-wide for mDNS/DNS-SD. Exhausting local file descriptors causes increased system load caused by logging errors of each of request. Overloading prevents glibc calls using nss-mdns plugins to resolve `*.local.` names and link-local addresses. As of time of publication, no known patched...
CVE-2025-59518
In LemonLDAP::NG before 2.16.7 and 2.17 through 2.21 before 2.21.3, OS command injection can occur in the Safe jail. It does not Localize _ during rule evaluation. Thus, an administrator who can edit a rule evaluated by the Safe jail can execute commands on the server.
CVE-2025-59466
We have identified a bug in Node.js error handling where "Maximum call stack size exceeded" errors become uncatchable when `async_hooks.createHook()` is enabled. Instead of reaching `process.on('uncaughtException')`, the process terminates, making the crash unrecoverable. Applications that rely on `AsyncLocalStorage` (v22, v20) or `async_hooks.createHook()` (v24, v22, v20) become vulnerable to denial-of-service crashes triggered by deep recursion under specific conditions.
CVE-2025-59465
A malformed `HTTP/2 HEADERS` frame with oversized, invalid `HPACK` data can cause Node.js to crash by triggering an unhandled `TLSSocket` error `ECONNRESET`. Instead of safely closing the connection, the process crashes, enabling a remote denial of service. This primarily affects applications that do not attach explicit error handlers to secure sockets, for example: ``` server.on('secureConnection', socket => { socket.on('error', err => { console.log(err) }) }) ```
CVE-2025-59464
A memory leak in Node.js’s OpenSSL integration occurs when converting `X.509` certificate fields to UTF-8 without freeing the allocated buffer. When applications call `socket.getPeerCertificate(true)`, each certificate field leaks memory, allowing remote clients to trigger steady memory growth through repeated TLS connections. Over time this can lead to resource exhaustion and denial of service.
CVE-2025-59438
Mbed TLS through 3.6.4 has an Observable Timing Discrepancy.
CVE-2025-59437
The ip (aka node-ip) package through 2.0.1 (in NPM) might allow SSRF because the IP address value 0 is improperly categorized as globally routable via isPublic. NOTE: this issue exists because of an incomplete fix for CVE-2024-29415. NOTE: in current versions of several applications, connection attempts to the IP address 0 (interpreted as 0.0.0.0) are blocked with error messages such as net::ERR_ADDRESS_INVALID. However, in some situations that depend on both application version and operating system, connection attempts to 0 and 0.0.0.0 are considered connection attempts to 127.0.0.1 (and, for this reason, a false value of isPublic would be preferable).
CVE-2025-59436
The ip (aka node-ip) package through 2.0.1 (in NPM) might allow SSRF because the IP address value 017700000001 is improperly categorized as globally routable via isPublic. NOTE: this issue exists because of an incomplete fix for CVE-2024-29415.
CVE-2025-59432
SCRAM (Salted Challenge Response Authentication Mechanism) is part of the family of Simple Authentication and Security Layer (SASL, RFC 4422) authentication mechanisms. Prior to version 3.2, a timing attack vulnerability exists in the SCRAM Java implementation. The issue arises because Arrays.equals was used to compare secret values such as client proofs and server signatures. Since Arrays.equals performs a short-circuit comparison, the execution time varies depending on how many leading bytes match. This behavior could allow an attacker to perform a timing side-channel attack and potentially infer sensitive authentication material. All users relying on SCRAM authentication are impacted. This vulnerability has been patched in version 3.1 by replacing Arrays.equals with MessageDigest.isEqual, which ensures constant-time comparison.
Уязвимостей на страницу
Уязвимость | CVSS | EPSS | Опубликовано | |
|---|---|---|---|---|
CVE-2025-59733 When decoding an OpenEXR file that uses DWAA or DWAB compression, there's an implicit assumption that all image channels have the same pixel type (and size), and that if there are four channels, the first four are "B", "G", "R" and "A". The channel parsing code can be found in decode_header. The buffer td->uncompressed_data is allocated in decode_block based on the xsize, ysize and computed current_channel_offset. The function dwa_uncompress then assumes at [5] that if there are 4 channels, these are "B", "G", "R" and "A", and in the calculations at [6] and [7] that all channels are of the same type, which matches the type of the main color channels. If we set the main color channels to a 4-byte type and add duplicate or unknown channels of the 2-byte EXR_HALF type, then the addition at [7] will increment the pointer by 4-bytes * xsize * nb_channels, which will exceed the allocated buffer. We recommend upgrading to version 8.0 or beyond. | 0% Низкий | 4 месяца назад | ||
CVE-2025-59732 When decoding an OpenEXR file that uses DWAA or DWAB compression, there's an implicit assumption that the height and width are divisible by 8. If the height or width of the image is not divisible by 8, the copy loops at [0] and [1] will continue to write until the next multiple of 8. The buffer td->uncompressed_data is allocated in decode_block based on the precise height and width of the image, so the "rounded-up" multiple of 8 in the copy loop can exceed the buffer bounds, and the write block starting at [2] can corrupt following heap memory. We recommend upgrading to version 8.0 or beyond. | 0% Низкий | 4 месяца назад | ||
CVE-2025-59731 When decoding an OpenEXR file that uses DWAA or DWAB compression, the specified raw length of run-length-encoded data is not checked when using it to calculate the output data. We read rle_raw_size from the input file at [0], we decompress and decode into the buffer td->rle_raw_data of size rle_raw_size at [1], and then at [2] we will access entries in this buffer up to (td->xsize - 1) * (td->ysize - 1) + rle_raw_size / 2, which may exceed rle_raw_size. We recommend upgrading to version 8.0 or beyond. | 0% Низкий | 4 месяца назад | ||
CVE-2025-59730 When decoding a frame for a SANM file (ANIM v0 variant), the decoded data can be larger than the buffer allocated for it. Frames encoded with codec 48 can specify their resolution (width x height). A buffer of appropriate size is allocated depending on the resolution. This codec can encode the frame contents using a run-length encoding algorithm. There are no checks that the decoded frame fits in the allocated buffer, leading to a heap-buffer-overflow. process_frame_obj initializes the buffers based on the frame resolution: We recommend upgrading to version 8.0 or beyond. | 0% Низкий | 4 месяца назад | ||
CVE-2025-59729 When parsing the header for a DHAV file, there's an integer underflow in offset calculation that leads to reading the duration from before the start of the allocated buffer. If we load a DHAV file that is larger than MAX_DURATION_BUFFER_SIZE bytes (0x100000) for example 0x101000 bytes, then at [0] we have size = 0x101000. At [1] we have end_buffer_size = 0x100000, and at [2] we have end_buffer_pos = 0x1000. The loop then scans backwards through the buffer looking for the dhav tag; when it is found, we'll calculate end_pos based on a 32-bit offset read from the buffer. There is subsequently a check [3] that end_pos is within the section of the file that has been copied into end_buffer, but it only correctly handles the cases where end_pos is before the start of the file or after the section copied into end_buffer, and not the case where end_pos is within the the file, but before the section copied into end_buffer. If we provide such an offset, (end_pos - end_buffer_pos) can u... | 0% Низкий | 4 месяца назад | ||
CVE-2025-59728 When calculating the content path in handling of MPEG-DASH manifests, there's an out-of-bounds NUL-byte write one byte past the end of the buffer.When we call xmlNodeGetContent below [0], it returns a buffer precisely allocated to match the string length, using strdup internally. If this buffer is not an empty string, it is assigned to root_url at [1].If the last (non-NUL) byte in this buffer is not '/' then we append '/' in-place at [2]. This will write two bytes into the buffer, starting at the last valid byte in the buffer, writing the NUL byte beyond the end of the allocated buffer. We recommend upgrading to version 8.0 or beyond. | 0% Низкий | 4 месяца назад | ||
CVE-2025-59692 PureVPN client applications on Linux through September 2025 mishandle firewalling. They flush the system's existing iptables rules and apply default ACCEPT policies when connecting to a VPN server. This removes firewall rules that may have been configured manually or by other software (e.g., UFW, container engines, or system security policies). Upon VPN disconnect, the original firewall state is not restored. As a result, the system may become unintentionally exposed to network traffic that was previously blocked. This affects CLI 2.0.1 and GUI 2.10.0. | CVSS3: 3.7 | 0% Низкий | 5 месяцев назад | |
CVE-2025-59691 PureVPN client applications on Linux through September 2025 allow IPv6 traffic to leak outside the VPN tunnel upon network events such as Wi-Fi reconnect or system resume. In the CLI client, the VPN auto-reconnects and claims to be connected, but IPv6 traffic is no longer routed or blocked. In the GUI client, the IPv6 connection remains functional after disconnection until the user clicks Reconnect. In both cases, the real IPv6 address is exposed to external services, violating user privacy and defeating the advertised IPv6 leak protection. This affects CLI 2.0.1 and GUI 2.10.0. | CVSS3: 3.7 | 0% Низкий | 5 месяцев назад | |
CVE-2025-59682 An issue was discovered in Django 4.2 before 4.2.25, 5.1 before 5.1.13, and 5.2 before 5.2.7. The django.utils.archive.extract() function, used by the "startapp --template" and "startproject --template" commands, allows partial directory traversal via an archive with file paths sharing a common prefix with the target directory. | CVSS3: 3.1 | 0% Низкий | 5 месяцев назад | |
CVE-2025-59681 An issue was discovered in Django 4.2 before 4.2.25, 5.1 before 5.1.13, and 5.2 before 5.2.7. QuerySet.annotate(), QuerySet.alias(), QuerySet.aggregate(), and QuerySet.extra() are subject to SQL injection in column aliases, when using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to these methods (on MySQL and MariaDB). | CVSS3: 7.1 | 0% Низкий | 5 месяцев назад | |
CVE-2025-59530 quic-go is an implementation of the QUIC protocol in Go. In versions prior to 0.49.0, 0.54.1, and 0.55.0, a misbehaving or malicious server can cause a denial-of-service (DoS) attack on the quic-go client by triggering an assertion failure, leading to a process crash. This requires no authentication and can be exploited during the handshake phase. This was observed in the wild with certain server implementations. quic-go needs to be able to handle misbehaving server implementations, including those that prematurely send a HANDSHAKE_DONE frame. Versions 0.49.0, 0.54.1, and 0.55.0 discard Initial keys when receiving a HANDSHAKE_DONE frame, thereby correctly handling premature HANDSHAKE_DONE frames. | CVSS3: 7.5 | 0% Низкий | 4 месяца назад | |
CVE-2025-59529 Avahi is a system which facilitates service discovery on a local network via the mDNS/DNS-SD protocol suite. In versions up to and including 0.9-rc2, the simple protocol server ignores the documented client limit and accepts unlimited connections, allowing for easy local DoS. Although `CLIENTS_MAX` is defined, `server_work()` unconditionally `accept()`s and `client_new()` always appends the new client and increments `n_clients`. There is no check against the limit. When client cannot be accepted as a result of maximal socket number of avahi-daemon, it logs unconditionally error per each connection. Unprivileged local users can exhaust daemon memory and file descriptors, causing a denial of service system-wide for mDNS/DNS-SD. Exhausting local file descriptors causes increased system load caused by logging errors of each of request. Overloading prevents glibc calls using nss-mdns plugins to resolve `*.local.` names and link-local addresses. As of time of publication, no known patched... | CVSS3: 5.5 | 0% Низкий | около 2 месяцев назад | |
CVE-2025-59518 In LemonLDAP::NG before 2.16.7 and 2.17 through 2.21 before 2.21.3, OS command injection can occur in the Safe jail. It does not Localize _ during rule evaluation. Thus, an administrator who can edit a rule evaluated by the Safe jail can execute commands on the server. | CVSS3: 8 | 0% Низкий | 5 месяцев назад | |
CVE-2025-59466 We have identified a bug in Node.js error handling where "Maximum call stack size exceeded" errors become uncatchable when `async_hooks.createHook()` is enabled. Instead of reaching `process.on('uncaughtException')`, the process terminates, making the crash unrecoverable. Applications that rely on `AsyncLocalStorage` (v22, v20) or `async_hooks.createHook()` (v24, v22, v20) become vulnerable to denial-of-service crashes triggered by deep recursion under specific conditions. | CVSS3: 7.5 | 0% Низкий | 24 дня назад | |
CVE-2025-59465 A malformed `HTTP/2 HEADERS` frame with oversized, invalid `HPACK` data can cause Node.js to crash by triggering an unhandled `TLSSocket` error `ECONNRESET`. Instead of safely closing the connection, the process crashes, enabling a remote denial of service. This primarily affects applications that do not attach explicit error handlers to secure sockets, for example: ``` server.on('secureConnection', socket => { socket.on('error', err => { console.log(err) }) }) ``` | CVSS3: 7.5 | 0% Низкий | 24 дня назад | |
CVE-2025-59464 A memory leak in Node.js’s OpenSSL integration occurs when converting `X.509` certificate fields to UTF-8 without freeing the allocated buffer. When applications call `socket.getPeerCertificate(true)`, each certificate field leaks memory, allowing remote clients to trigger steady memory growth through repeated TLS connections. Over time this can lead to resource exhaustion and denial of service. | CVSS3: 7.5 | 0% Низкий | 24 дня назад | |
CVE-2025-59438 Mbed TLS through 3.6.4 has an Observable Timing Discrepancy. | CVSS3: 5.3 | 0% Низкий | 4 месяца назад | |
CVE-2025-59437 The ip (aka node-ip) package through 2.0.1 (in NPM) might allow SSRF because the IP address value 0 is improperly categorized as globally routable via isPublic. NOTE: this issue exists because of an incomplete fix for CVE-2024-29415. NOTE: in current versions of several applications, connection attempts to the IP address 0 (interpreted as 0.0.0.0) are blocked with error messages such as net::ERR_ADDRESS_INVALID. However, in some situations that depend on both application version and operating system, connection attempts to 0 and 0.0.0.0 are considered connection attempts to 127.0.0.1 (and, for this reason, a false value of isPublic would be preferable). | CVSS3: 3.2 | 0% Низкий | 5 месяцев назад | |
CVE-2025-59436 The ip (aka node-ip) package through 2.0.1 (in NPM) might allow SSRF because the IP address value 017700000001 is improperly categorized as globally routable via isPublic. NOTE: this issue exists because of an incomplete fix for CVE-2024-29415. | CVSS3: 3.2 | 0% Низкий | 5 месяцев назад | |
CVE-2025-59432 SCRAM (Salted Challenge Response Authentication Mechanism) is part of the family of Simple Authentication and Security Layer (SASL, RFC 4422) authentication mechanisms. Prior to version 3.2, a timing attack vulnerability exists in the SCRAM Java implementation. The issue arises because Arrays.equals was used to compare secret values such as client proofs and server signatures. Since Arrays.equals performs a short-circuit comparison, the execution time varies depending on how many leading bytes match. This behavior could allow an attacker to perform a timing side-channel attack and potentially infer sensitive authentication material. All users relying on SCRAM authentication are impacted. This vulnerability has been patched in version 3.1 by replacing Arrays.equals with MessageDigest.isEqual, which ensures constant-time comparison. | 0% Низкий | 5 месяцев назад |
Уязвимостей на страницу