Количество 318
Количество 318

CVE-2019-11248
The debugging endpoint /debug/pprof is exposed over the unauthenticated Kubelet healthz port. The go pprof endpoint is exposed over the Kubelet's healthz port. This debugging endpoint can potentially leak sensitive information such as internal Kubelet memory addresses and configuration, or for limited denial of service. Versions prior to 1.15.0, 1.14.4, 1.13.8, and 1.12.10 are affected. The issue is of medium severity, but not exposed by the default configuration.

CVE-2019-11248
The debugging endpoint /debug/pprof is exposed over the unauthenticated Kubelet healthz port. The go pprof endpoint is exposed over the Kubelet's healthz port. This debugging endpoint can potentially leak sensitive information such as internal Kubelet memory addresses and configuration, or for limited denial of service. Versions prior to 1.15.0, 1.14.4, 1.13.8, and 1.12.10 are affected. The issue is of medium severity, but not exposed by the default configuration.
CVE-2019-11248
The debugging endpoint /debug/pprof is exposed over the unauthenticate ...

CVE-2019-11246
The kubectl cp command allows copying files between containers and the user machine. To copy files from a container, Kubernetes runs tar inside the container to create a tar archive, copies it over the network, and kubectl unpacks it on the user’s machine. If the tar binary in the container is malicious, it could run any code and output unexpected, malicious results. An attacker could use this to write files to any path on the user’s machine when kubectl cp is called, limited only by the system permissions of the local user. Kubernetes affected versions include versions prior to 1.12.9, versions prior to 1.13.6, versions prior to 1.14.2, and versions 1.1, 1.2, 1.4, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11.

CVE-2019-11246
The kubectl cp command allows copying files between containers and the user machine. To copy files from a container, Kubernetes runs tar inside the container to create a tar archive, copies it over the network, and kubectl unpacks it on the user’s machine. If the tar binary in the container is malicious, it could run any code and output unexpected, malicious results. An attacker could use this to write files to any path on the user’s machine when kubectl cp is called, limited only by the system permissions of the local user. Kubernetes affected versions include versions prior to 1.12.9, versions prior to 1.13.6, versions prior to 1.14.2, and versions 1.1, 1.2, 1.4, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11.

CVE-2019-11246
The kubectl cp command allows copying files between containers and the user machine. To copy files from a container, Kubernetes runs tar inside the container to create a tar archive, copies it over the network, and kubectl unpacks it on the user’s machine. If the tar binary in the container is malicious, it could run any code and output unexpected, malicious results. An attacker could use this to write files to any path on the user’s machine when kubectl cp is called, limited only by the system permissions of the local user. Kubernetes affected versions include versions prior to 1.12.9, versions prior to 1.13.6, versions prior to 1.14.2, and versions 1.1, 1.2, 1.4, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11.
CVE-2019-11246
The kubectl cp command allows copying files between containers and the ...

CVE-2019-11245
In kubelet v1.13.6 and v1.14.2, containers for pods that do not specify an explicit runAsUser attempt to run as uid 0 (root) on container restart, or if the image was previously pulled to the node. If the pod specified mustRunAsNonRoot: true, the kubelet will refuse to start the container as root. If the pod did not specify mustRunAsNonRoot: true, the kubelet will run the container as uid 0.

CVE-2019-11245
In kubelet v1.13.6 and v1.14.2, containers for pods that do not specify an explicit runAsUser attempt to run as uid 0 (root) on container restart, or if the image was previously pulled to the node. If the pod specified mustRunAsNonRoot: true, the kubelet will refuse to start the container as root. If the pod did not specify mustRunAsNonRoot: true, the kubelet will run the container as uid 0.

CVE-2019-11245
In kubelet v1.13.6 and v1.14.2, containers for pods that do not specify an explicit runAsUser attempt to run as uid 0 (root) on container restart, or if the image was previously pulled to the node. If the pod specified mustRunAsNonRoot: true, the kubelet will refuse to start the container as root. If the pod did not specify mustRunAsNonRoot: true, the kubelet will run the container as uid 0.
CVE-2019-11245
In kubelet v1.13.6 and v1.14.2, containers for pods that do not specif ...

CVE-2018-1999040
An exposure of sensitive information vulnerability exists in Jenkins Kubernetes Plugin 1.10.1 and earlier in KubernetesCloud.java that allows attackers to capture credentials with a known credentials ID stored in Jenkins.

CVE-2018-1999040
An exposure of sensitive information vulnerability exists in Jenkins Kubernetes Plugin 1.10.1 and earlier in KubernetesCloud.java that allows attackers to capture credentials with a known credentials ID stored in Jenkins.

CVE-2018-1002102
Improper validation of URL redirection in the Kubernetes API server in versions prior to v1.14.0 allows an attacker-controlled Kubelet to redirect API server requests from streaming endpoints to arbitrary hosts. Impacted API servers will follow the redirect as a GET request with client-certificate credentials for authenticating to the Kubelet.

CVE-2018-1002102
Improper validation of URL redirection in the Kubernetes API server in versions prior to v1.14.0 allows an attacker-controlled Kubelet to redirect API server requests from streaming endpoints to arbitrary hosts. Impacted API servers will follow the redirect as a GET request with client-certificate credentials for authenticating to the Kubelet.

CVE-2018-1002102
Improper validation of URL redirection in the Kubernetes API server in versions prior to v1.14.0 allows an attacker-controlled Kubelet to redirect API server requests from streaming endpoints to arbitrary hosts. Impacted API servers will follow the redirect as a GET request with client-certificate credentials for authenticating to the Kubelet.
CVE-2018-1002102
Improper validation of URL redirection in the Kubernetes API server in ...

CVE-2018-1002101
In Kubernetes versions 1.9.0-1.9.9, 1.10.0-1.10.5, and 1.11.0-1.11.1, user input was handled insecurely while setting up volume mounts on Windows nodes, which could lead to command line argument injection.

CVE-2018-1002101
In Kubernetes versions 1.9.0-1.9.9, 1.10.0-1.10.5, and 1.11.0-1.11.1, user input was handled insecurely while setting up volume mounts on Windows nodes, which could lead to command line argument injection.
CVE-2018-1002101
In Kubernetes versions 1.9.0-1.9.9, 1.10.0-1.10.5, and 1.11.0-1.11.1, ...
Уязвимостей на страницу
Уязвимость | CVSS | EPSS | Опубликовано | |
---|---|---|---|---|
![]() | CVE-2019-11248 The debugging endpoint /debug/pprof is exposed over the unauthenticated Kubelet healthz port. The go pprof endpoint is exposed over the Kubelet's healthz port. This debugging endpoint can potentially leak sensitive information such as internal Kubelet memory addresses and configuration, or for limited denial of service. Versions prior to 1.15.0, 1.14.4, 1.13.8, and 1.12.10 are affected. The issue is of medium severity, but not exposed by the default configuration. | CVSS3: 6.5 | 91% Критический | почти 6 лет назад |
![]() | CVE-2019-11248 The debugging endpoint /debug/pprof is exposed over the unauthenticated Kubelet healthz port. The go pprof endpoint is exposed over the Kubelet's healthz port. This debugging endpoint can potentially leak sensitive information such as internal Kubelet memory addresses and configuration, or for limited denial of service. Versions prior to 1.15.0, 1.14.4, 1.13.8, and 1.12.10 are affected. The issue is of medium severity, but not exposed by the default configuration. | CVSS3: 8.2 | 91% Критический | почти 6 лет назад |
CVE-2019-11248 The debugging endpoint /debug/pprof is exposed over the unauthenticate ... | CVSS3: 8.2 | 91% Критический | почти 6 лет назад | |
![]() | CVE-2019-11246 The kubectl cp command allows copying files between containers and the user machine. To copy files from a container, Kubernetes runs tar inside the container to create a tar archive, copies it over the network, and kubectl unpacks it on the user’s machine. If the tar binary in the container is malicious, it could run any code and output unexpected, malicious results. An attacker could use this to write files to any path on the user’s machine when kubectl cp is called, limited only by the system permissions of the local user. Kubernetes affected versions include versions prior to 1.12.9, versions prior to 1.13.6, versions prior to 1.14.2, and versions 1.1, 1.2, 1.4, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11. | CVSS3: 6.5 | 2% Низкий | почти 6 лет назад |
![]() | CVE-2019-11246 The kubectl cp command allows copying files between containers and the user machine. To copy files from a container, Kubernetes runs tar inside the container to create a tar archive, copies it over the network, and kubectl unpacks it on the user’s machine. If the tar binary in the container is malicious, it could run any code and output unexpected, malicious results. An attacker could use this to write files to any path on the user’s machine when kubectl cp is called, limited only by the system permissions of the local user. Kubernetes affected versions include versions prior to 1.12.9, versions prior to 1.13.6, versions prior to 1.14.2, and versions 1.1, 1.2, 1.4, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11. | CVSS3: 5.3 | 2% Низкий | почти 6 лет назад |
![]() | CVE-2019-11246 The kubectl cp command allows copying files between containers and the user machine. To copy files from a container, Kubernetes runs tar inside the container to create a tar archive, copies it over the network, and kubectl unpacks it on the user’s machine. If the tar binary in the container is malicious, it could run any code and output unexpected, malicious results. An attacker could use this to write files to any path on the user’s machine when kubectl cp is called, limited only by the system permissions of the local user. Kubernetes affected versions include versions prior to 1.12.9, versions prior to 1.13.6, versions prior to 1.14.2, and versions 1.1, 1.2, 1.4, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11. | CVSS3: 6.5 | 2% Низкий | почти 6 лет назад |
CVE-2019-11246 The kubectl cp command allows copying files between containers and the ... | CVSS3: 6.5 | 2% Низкий | почти 6 лет назад | |
![]() | CVE-2019-11245 In kubelet v1.13.6 and v1.14.2, containers for pods that do not specify an explicit runAsUser attempt to run as uid 0 (root) on container restart, or if the image was previously pulled to the node. If the pod specified mustRunAsNonRoot: true, the kubelet will refuse to start the container as root. If the pod did not specify mustRunAsNonRoot: true, the kubelet will run the container as uid 0. | CVSS3: 4.9 | 0% Низкий | почти 6 лет назад |
![]() | CVE-2019-11245 In kubelet v1.13.6 and v1.14.2, containers for pods that do not specify an explicit runAsUser attempt to run as uid 0 (root) on container restart, or if the image was previously pulled to the node. If the pod specified mustRunAsNonRoot: true, the kubelet will refuse to start the container as root. If the pod did not specify mustRunAsNonRoot: true, the kubelet will run the container as uid 0. | CVSS3: 4.9 | 0% Низкий | около 6 лет назад |
![]() | CVE-2019-11245 In kubelet v1.13.6 and v1.14.2, containers for pods that do not specify an explicit runAsUser attempt to run as uid 0 (root) on container restart, or if the image was previously pulled to the node. If the pod specified mustRunAsNonRoot: true, the kubelet will refuse to start the container as root. If the pod did not specify mustRunAsNonRoot: true, the kubelet will run the container as uid 0. | CVSS3: 4.9 | 0% Низкий | почти 6 лет назад |
CVE-2019-11245 In kubelet v1.13.6 and v1.14.2, containers for pods that do not specif ... | CVSS3: 4.9 | 0% Низкий | почти 6 лет назад | |
![]() | CVE-2018-1999040 An exposure of sensitive information vulnerability exists in Jenkins Kubernetes Plugin 1.10.1 and earlier in KubernetesCloud.java that allows attackers to capture credentials with a known credentials ID stored in Jenkins. | CVSS3: 4.8 | 0% Низкий | почти 7 лет назад |
![]() | CVE-2018-1999040 An exposure of sensitive information vulnerability exists in Jenkins Kubernetes Plugin 1.10.1 and earlier in KubernetesCloud.java that allows attackers to capture credentials with a known credentials ID stored in Jenkins. | CVSS3: 8.8 | 0% Низкий | почти 7 лет назад |
![]() | CVE-2018-1002102 Improper validation of URL redirection in the Kubernetes API server in versions prior to v1.14.0 allows an attacker-controlled Kubelet to redirect API server requests from streaming endpoints to arbitrary hosts. Impacted API servers will follow the redirect as a GET request with client-certificate credentials for authenticating to the Kubelet. | CVSS3: 2.6 | 0% Низкий | больше 5 лет назад |
![]() | CVE-2018-1002102 Improper validation of URL redirection in the Kubernetes API server in versions prior to v1.14.0 allows an attacker-controlled Kubelet to redirect API server requests from streaming endpoints to arbitrary hosts. Impacted API servers will follow the redirect as a GET request with client-certificate credentials for authenticating to the Kubelet. | CVSS3: 2.6 | 0% Низкий | больше 5 лет назад |
![]() | CVE-2018-1002102 Improper validation of URL redirection in the Kubernetes API server in versions prior to v1.14.0 allows an attacker-controlled Kubelet to redirect API server requests from streaming endpoints to arbitrary hosts. Impacted API servers will follow the redirect as a GET request with client-certificate credentials for authenticating to the Kubelet. | CVSS3: 2.6 | 0% Низкий | больше 5 лет назад |
CVE-2018-1002102 Improper validation of URL redirection in the Kubernetes API server in ... | CVSS3: 2.6 | 0% Низкий | больше 5 лет назад | |
![]() | CVE-2018-1002101 In Kubernetes versions 1.9.0-1.9.9, 1.10.0-1.10.5, and 1.11.0-1.11.1, user input was handled insecurely while setting up volume mounts on Windows nodes, which could lead to command line argument injection. | CVSS3: 7 | 1% Низкий | больше 6 лет назад |
![]() | CVE-2018-1002101 In Kubernetes versions 1.9.0-1.9.9, 1.10.0-1.10.5, and 1.11.0-1.11.1, user input was handled insecurely while setting up volume mounts on Windows nodes, which could lead to command line argument injection. | CVSS3: 5.9 | 1% Низкий | больше 6 лет назад |
CVE-2018-1002101 In Kubernetes versions 1.9.0-1.9.9, 1.10.0-1.10.5, and 1.11.0-1.11.1, ... | CVSS3: 5.9 | 1% Низкий | больше 6 лет назад |
Уязвимостей на страницу