Количество 17
Количество 17

CVE-2024-49985
In the Linux kernel, the following vulnerability has been resolved: i2c: stm32f7: Do not prepare/unprepare clock during runtime suspend/resume In case there is any sort of clock controller attached to this I2C bus controller, for example Versaclock or even an AIC32x4 I2C codec, then an I2C transfer triggered from the clock controller clk_ops .prepare callback may trigger a deadlock on drivers/clk/clk.c prepare_lock mutex. This is because the clock controller first grabs the prepare_lock mutex and then performs the prepare operation, including its I2C access. The I2C access resumes this I2C bus controller via .runtime_resume callback, which calls clk_prepare_enable(), which attempts to grab the prepare_lock mutex again and deadlocks. Since the clock are already prepared since probe() and unprepared in remove(), use simple clk_enable()/clk_disable() calls to enable and disable the clock on runtime suspend and resume, to avoid hitting the prepare_lock mutex.

CVE-2024-49985
In the Linux kernel, the following vulnerability has been resolved: i2c: stm32f7: Do not prepare/unprepare clock during runtime suspend/resume In case there is any sort of clock controller attached to this I2C bus controller, for example Versaclock or even an AIC32x4 I2C codec, then an I2C transfer triggered from the clock controller clk_ops .prepare callback may trigger a deadlock on drivers/clk/clk.c prepare_lock mutex. This is because the clock controller first grabs the prepare_lock mutex and then performs the prepare operation, including its I2C access. The I2C access resumes this I2C bus controller via .runtime_resume callback, which calls clk_prepare_enable(), which attempts to grab the prepare_lock mutex again and deadlocks. Since the clock are already prepared since probe() and unprepared in remove(), use simple clk_enable()/clk_disable() calls to enable and disable the clock on runtime suspend and resume, to avoid hitting the prepare_lock mutex.

CVE-2024-49985
In the Linux kernel, the following vulnerability has been resolved: i2c: stm32f7: Do not prepare/unprepare clock during runtime suspend/resume In case there is any sort of clock controller attached to this I2C bus controller, for example Versaclock or even an AIC32x4 I2C codec, then an I2C transfer triggered from the clock controller clk_ops .prepare callback may trigger a deadlock on drivers/clk/clk.c prepare_lock mutex. This is because the clock controller first grabs the prepare_lock mutex and then performs the prepare operation, including its I2C access. The I2C access resumes this I2C bus controller via .runtime_resume callback, which calls clk_prepare_enable(), which attempts to grab the prepare_lock mutex again and deadlocks. Since the clock are already prepared since probe() and unprepared in remove(), use simple clk_enable()/clk_disable() calls to enable and disable the clock on runtime suspend and resume, to avoid hitting the prepare_lock mutex.

CVE-2024-49985
CVE-2024-49985
In the Linux kernel, the following vulnerability has been resolved: i ...
GHSA-qfhj-q535-jf9w
In the Linux kernel, the following vulnerability has been resolved: i2c: stm32f7: Do not prepare/unprepare clock during runtime suspend/resume In case there is any sort of clock controller attached to this I2C bus controller, for example Versaclock or even an AIC32x4 I2C codec, then an I2C transfer triggered from the clock controller clk_ops .prepare callback may trigger a deadlock on drivers/clk/clk.c prepare_lock mutex. This is because the clock controller first grabs the prepare_lock mutex and then performs the prepare operation, including its I2C access. The I2C access resumes this I2C bus controller via .runtime_resume callback, which calls clk_prepare_enable(), which attempts to grab the prepare_lock mutex again and deadlocks. Since the clock are already prepared since probe() and unprepared in remove(), use simple clk_enable()/clk_disable() calls to enable and disable the clock on runtime suspend and resume, to avoid hitting the prepare_lock mutex.

BDU:2025-07987
Уязвимость ядра операционной системы Linux, связанная с недостаточной блокировкой, позволяющая нарушителю вызвать отказ в обслуживании(DoS)

ROS-20250317-01
Множественные уязвимости kernel-lt
ELSA-2024-12884
ELSA-2024-12884: Unbreakable Enterprise kernel security update (IMPORTANT)
ELSA-2024-12887
ELSA-2024-12887: Unbreakable Enterprise kernel security update (IMPORTANT)

SUSE-SU-2024:4376-1
Security update for the Linux Kernel

SUSE-SU-2024:4315-1
Security update for the Linux Kernel

SUSE-SU-2024:3986-1
Security update for the Linux Kernel

SUSE-SU-2024:3984-1
Security update for the Linux Kernel

SUSE-SU-2024:4364-1
Security update for the Linux Kernel

SUSE-SU-2024:4387-1
Security update for the Linux Kernel

SUSE-SU-2024:4318-1
Security update for the Linux Kernel
Уязвимостей на страницу
Уязвимость | CVSS | EPSS | Опубликовано | |
---|---|---|---|---|
![]() | CVE-2024-49985 In the Linux kernel, the following vulnerability has been resolved: i2c: stm32f7: Do not prepare/unprepare clock during runtime suspend/resume In case there is any sort of clock controller attached to this I2C bus controller, for example Versaclock or even an AIC32x4 I2C codec, then an I2C transfer triggered from the clock controller clk_ops .prepare callback may trigger a deadlock on drivers/clk/clk.c prepare_lock mutex. This is because the clock controller first grabs the prepare_lock mutex and then performs the prepare operation, including its I2C access. The I2C access resumes this I2C bus controller via .runtime_resume callback, which calls clk_prepare_enable(), which attempts to grab the prepare_lock mutex again and deadlocks. Since the clock are already prepared since probe() and unprepared in remove(), use simple clk_enable()/clk_disable() calls to enable and disable the clock on runtime suspend and resume, to avoid hitting the prepare_lock mutex. | CVSS3: 5.5 | 0% Низкий | 10 месяцев назад |
![]() | CVE-2024-49985 In the Linux kernel, the following vulnerability has been resolved: i2c: stm32f7: Do not prepare/unprepare clock during runtime suspend/resume In case there is any sort of clock controller attached to this I2C bus controller, for example Versaclock or even an AIC32x4 I2C codec, then an I2C transfer triggered from the clock controller clk_ops .prepare callback may trigger a deadlock on drivers/clk/clk.c prepare_lock mutex. This is because the clock controller first grabs the prepare_lock mutex and then performs the prepare operation, including its I2C access. The I2C access resumes this I2C bus controller via .runtime_resume callback, which calls clk_prepare_enable(), which attempts to grab the prepare_lock mutex again and deadlocks. Since the clock are already prepared since probe() and unprepared in remove(), use simple clk_enable()/clk_disable() calls to enable and disable the clock on runtime suspend and resume, to avoid hitting the prepare_lock mutex. | CVSS3: 5.5 | 0% Низкий | 10 месяцев назад |
![]() | CVE-2024-49985 In the Linux kernel, the following vulnerability has been resolved: i2c: stm32f7: Do not prepare/unprepare clock during runtime suspend/resume In case there is any sort of clock controller attached to this I2C bus controller, for example Versaclock or even an AIC32x4 I2C codec, then an I2C transfer triggered from the clock controller clk_ops .prepare callback may trigger a deadlock on drivers/clk/clk.c prepare_lock mutex. This is because the clock controller first grabs the prepare_lock mutex and then performs the prepare operation, including its I2C access. The I2C access resumes this I2C bus controller via .runtime_resume callback, which calls clk_prepare_enable(), which attempts to grab the prepare_lock mutex again and deadlocks. Since the clock are already prepared since probe() and unprepared in remove(), use simple clk_enable()/clk_disable() calls to enable and disable the clock on runtime suspend and resume, to avoid hitting the prepare_lock mutex. | CVSS3: 5.5 | 0% Низкий | 10 месяцев назад |
![]() | CVSS3: 5.5 | 0% Низкий | 9 месяцев назад | |
CVE-2024-49985 In the Linux kernel, the following vulnerability has been resolved: i ... | CVSS3: 5.5 | 0% Низкий | 10 месяцев назад | |
GHSA-qfhj-q535-jf9w In the Linux kernel, the following vulnerability has been resolved: i2c: stm32f7: Do not prepare/unprepare clock during runtime suspend/resume In case there is any sort of clock controller attached to this I2C bus controller, for example Versaclock or even an AIC32x4 I2C codec, then an I2C transfer triggered from the clock controller clk_ops .prepare callback may trigger a deadlock on drivers/clk/clk.c prepare_lock mutex. This is because the clock controller first grabs the prepare_lock mutex and then performs the prepare operation, including its I2C access. The I2C access resumes this I2C bus controller via .runtime_resume callback, which calls clk_prepare_enable(), which attempts to grab the prepare_lock mutex again and deadlocks. Since the clock are already prepared since probe() and unprepared in remove(), use simple clk_enable()/clk_disable() calls to enable and disable the clock on runtime suspend and resume, to avoid hitting the prepare_lock mutex. | CVSS3: 5.5 | 0% Низкий | 10 месяцев назад | |
![]() | BDU:2025-07987 Уязвимость ядра операционной системы Linux, связанная с недостаточной блокировкой, позволяющая нарушителю вызвать отказ в обслуживании(DoS) | CVSS3: 5.5 | 0% Низкий | 10 месяцев назад |
![]() | ROS-20250317-01 Множественные уязвимости kernel-lt | CVSS3: 8.8 | 5 месяцев назад | |
ELSA-2024-12884 ELSA-2024-12884: Unbreakable Enterprise kernel security update (IMPORTANT) | 8 месяцев назад | |||
ELSA-2024-12887 ELSA-2024-12887: Unbreakable Enterprise kernel security update (IMPORTANT) | 8 месяцев назад | |||
![]() | SUSE-SU-2024:4376-1 Security update for the Linux Kernel | 8 месяцев назад | ||
![]() | SUSE-SU-2024:4315-1 Security update for the Linux Kernel | 8 месяцев назад | ||
![]() | SUSE-SU-2024:3986-1 Security update for the Linux Kernel | 9 месяцев назад | ||
![]() | SUSE-SU-2024:3984-1 Security update for the Linux Kernel | 9 месяцев назад | ||
![]() | SUSE-SU-2024:4364-1 Security update for the Linux Kernel | 8 месяцев назад | ||
![]() | SUSE-SU-2024:4387-1 Security update for the Linux Kernel | 8 месяцев назад | ||
![]() | SUSE-SU-2024:4318-1 Security update for the Linux Kernel | 8 месяцев назад |
Уязвимостей на страницу